Sometimes, we are interested in a random variable that is defined as a function of another random variable. For example:

- $Y = h(X)$, where Y is the heat of a circuit and X its current.
- $Y = h(T)$, where Y is the quality of the crop and T is the average temperature of the region.
- $Y = h(S)$, where Y is the exam grade and S is the amount of sleep the student got during the night before the exam.

Formally, let $Y = h(X)$ be a one-to-one transformation of a random variable X to a random variable Y.

- This means that $y = h(x)$ has a unique solution.
- Let that solution be $x = h^{-1}(y) = u(y)$.
Function of a random variable

Sometimes, we are interested in a random variable that is defined as a function of another random variable. For example:

- \(Y = h(X) \), where \(Y \) is the heat of a circuit and \(X \) its current.
- \(Y = h(T) \), where \(Y \) is the quality of the crop and \(T \) is the average temperature of the region.
- \(Y = h(S) \), where \(Y \) is the exam grade and \(S \) is the amount of sleep the student got during the night before the exam.

Formally, let \(Y = h(X) \) be a one-to-one transformation of a random variable \(X \) to a random variable \(Y \).

- This means that \(y = h(x) \) has a unique solution.
- Let that solution be \(x = h^{-1}(y) = u(y) \).
Sometimes, we are interested in a random variable that is defined as a *function* of another random variable. For example:

- \(Y = h(X) \), where \(Y \) is the heat of a circuit and \(X \) its current.
- \(Y = h(T) \), where \(Y \) is the quality of the crop and \(T \) is the average temperature of the region.
- \(Y = h(S) \), where \(Y \) is the exam grade and \(S \) is the amount of sleep the student got during the night before the exam.

Formally, let \(Y = h(X) \) be a **one-to-one** transformation of a random variable \(X \) to a random variable \(Y \).

- This means that \(y = h(x) \) has a unique solution.
- Let that solution be \(x = h^{-1}(y) = u(y) \).
Function of a random variable

Sometimes, we are interested in a random variable that is defined as a function of another random variable. For example:

- $Y = h(X)$, where Y is the heat of a circuit and X its current.
- $Y = h(T)$, where Y is the quality of the crop and T is the average temperature of the region.
- $Y = h(S)$, where Y is the exam grade and S is the amount of sleep the student got during the night before the exam.

Formally, let $Y = h(X)$ be a one-to-one transformation of a random variable X to a random variable Y.

- This means that $y = h(x)$ has a unique solution.
- Let that solution be $x = h^{-1}(y) = u(y)$.
Function of a random variable

Let $Y = h(X)$ be a one-to-one function of random variable X to Y. X is distributed with pmf/pdf $f_X(x)$. Then, the pmf/pdf of random variable $Y = h(X)$ can be found by:

1. **Discrete X:** $f_Y(y) = f_X(u(y))$.
2. **Continuous X:**
 $$f_Y(y) = f_X(u(y)) \cdot |u'(y)|,$$
 where $u'(y)$ is the derivative of function $u(y)$.

Example

Continuous random variable X has pdf $f(x) = \frac{x}{2}$, defined over $0 \leq x \leq 2$. What is the pdf of $Y = \sqrt{X}$?

Answer: First of all, h is a one-to-one transformation and we have $x = h^{-1}(y) = u(y) = y^2$. Then,

$$f_Y(y) = f_X(u(y)) \cdot |u'(y)| = \frac{y^2}{2} \cdot 2y = y^3.$$

Finally, X is defined over $0 \leq x \leq 2$ so $Y = \sqrt{X}$ is defined over $0 \leq y \leq \sqrt{2}$.

Chrysafis Vogiatzis
Joint distributions: common distributions
Function of a random variable

Let \(Y = h(X) \) be a one-to-one function of random variable \(X \) to \(Y \). \(X \) is distributed with pmf/pdf \(f_X(x) \). Then, the pmf/pdf of random variable \(Y = h(X) \) can be found by:

1. **Discrete \(X \):** \(f_Y(y) = f_X(u(y)) \).
2. **Continuous \(X \):** \(f_Y(y) = f_X(u(y)) \cdot |u'(y)| \),
 where \(u'(y) \) is the derivative of function \(u(y) \).

Example

Continuous random variable \(X \) has pdf \(f(x) = \frac{x}{2} \), defined over \(0 \leq x \leq 2 \). What is the pdf of \(Y = \sqrt{X} \)?

Answer: First of all, \(h \) is a one-to-one transformation and we have \(x = h^{-1}(y) = u(y) = y^2 \). Then,

\[
f_Y(y) = f_X(u(y)) \cdot |u'(y)| = \frac{y^2}{2} \cdot 2y = y^3.
\]

Finally, \(X \) is defined over \(0 \leq x \leq 2 \) so \(Y = \sqrt{X} \) is defined over \(0 \leq y \leq \sqrt{2} \).
Function of a random variable

Let $Y = h(X)$ be a one-to-one function of random variable X to Y. X is distributed with pmf/pdf $f_X(x)$. Then, the pmf/pdf of random variable $Y = h(X)$ can be found by:

1. **Discrete X:** $f_Y(y) = f_X(u(y))$.
2. **Continuous X:** $f_Y(y) = f_X(u(y)) \cdot |u'(y)|$,
 where $u'(y)$ is the derivative of function $u(y)$.

Example

Continuous random variable X has pdf $f(x) = \frac{x}{2}$, defined over $0 \leq x \leq 2$. What is the pdf of $Y = \sqrt{X}$?

Answer: First of all, h is a one-to-one transformation and we have $x = h^{-1}(y) = u(y) = y^2$. Then,

$$f_Y(y) = f_X(u(y)) \cdot |u'(y)| = \frac{y^2}{2} \cdot 2y = y^3.$$

Finally, X is defined over $0 \leq x \leq 2$ so $Y = \sqrt{X}$ is defined over $0 \leq y \leq \sqrt{2}$.
Function of a random variable

Let \(Y = h(X) \) be a one-to-one function of random variable \(X \) to \(Y \). \(X \) is distributed with pmf/pdf \(f_X(x) \). Then, the pmf/pdf of random variable \(Y = h(X) \) can be found by:

1. **Discrete \(X \):** \(f_Y(y) = f_X(u(y)). \)
2. **Continuous \(X \):** \(f_Y(y) = f_X(u(y)) \cdot |u'(y)|, \)
 where \(u'(y) \) is the derivative of function \(u(y) \).

Example

Continuous random variable \(X \) has pdf \(f(x) = \frac{x}{2}, \) defined over \(0 \leq x \leq 2 \). What is the pdf of \(Y = \sqrt{X} \)?

Answer: First of all, \(h \) is a one-to-one transformation and we have \(x = h^{-1}(y) = u(y) = y^2 \). Then,

\[
f_Y(y) = f_X(u(y)) \cdot |u'(y)| = \frac{y^2}{2} \cdot 2y = y^3.
\]

Finally, \(X \) is defined over \(0 \leq x \leq 2 \) so \(Y = \sqrt{X} \) is defined over \(0 \leq y \leq \sqrt{2} \).
Function of a random variable

Let $Y = h(X)$ be a one-to-one function of random variable X to Y. X is distributed with pmf/pdf $f_X(x)$. Then, the pmf/pdf of random variable $Y = h(X)$ can be found by:

1. **Discrete X:** $f_Y(y) = f_X(u(y))$.
2. **Continuous X:** $f_Y(y) = f_X(u(y)) \cdot |u'(y)|$,
 where $u'(y)$ is the derivative of function $u(y)$.

Example

Continuous random variable X has pdf $f(x) = \frac{x}{2}$, defined over $0 \leq x \leq 2$. What is the pdf of $Y = \sqrt{X}$?

Answer: First of all, h is a one-to-one transformation and we have $x = h^{-1}(y) = u(y) = y^2$. Then,

$$f_Y(y) = f_X(u(y)) \cdot |u'(y)| = \frac{y^2}{2} \cdot 2y = y^3.$$

Finally, X is defined over $0 \leq x \leq 2$ so $Y = \sqrt{X}$ is defined over $0 \leq y \leq \sqrt{2}$.
Function of a random variable

Let $Y = h(X)$ be a one-to-one function of random variable X to Y. X is distributed with pmf/pdf $f_X(x)$. Then, the pmf/pdf of random variable $Y = h(X)$ can be found by:

1. Discrete X: $f_Y(y) = f_X(u(y))$.
2. Continuous X: $f_Y(y) = f_X(u(y)) \cdot |u'(y)|$,
 where $u'(y)$ is the derivative of function $u(y)$.

Example

Continuous random variable X has pdf $f(x) = \frac{x}{2}$, defined over $0 \leq x \leq 2$. What is the pdf of $Y = \sqrt{X}$?

Answer: First of all, h is a one-to-one transformation and we have $x = h^{-1}(y) = u(y) = y^2$. Then,

$$f_Y(y) = f_X(u(y)) \cdot |u'(y)| = \frac{y^2}{2} \cdot 2y = y^3.$$

Finally, X is defined over $0 \leq x \leq 2$ so $Y = \sqrt{X}$ is defined over $0 \leq y \leq \sqrt{2}$.
Quick review:

1. $f_{XY}(x, y)$: joint pmf/pdf.
2. marginal/conditional pmf/pdf.
3. expectations/variances.
4. independence/covariance/correlation.

Recall that all these derivations extend to more than 2 random variables.

Common joint distributions:

1. Discrete: multinomial.
2. Continuous: bivariate normal distribution.
Quick review:

1. $f_{XY}(x, y)$: joint pmf/pdf.
2. marginal/conditional pmf/pdf.
3. expectations/variances.
4. independence/covariance/correlation.

Recall that all these derivations extend to more than 2 random variables.

Common joint distributions:

1. Discrete: **multinomial**.
2. Continuous: **bivariate normal** distribution.
The multinomial distribution

Back to the binomial:

- \(n \) independent tries.
- Each try results in success or failure (2) outcomes.
- \(p \) is the probability of each try resulting in a success.
- \(X \) (number of successes) is a random variable.

Extending to the multinomial:

- Still \(n \) independent tries.
- Each try results in multiple (\(k \)) outcomes.
- \(p_i \) the probability of seeing outcome \(i = 1, \ldots, k \).
- \(X_i \) is the number of times we see the \(i \)-th outcome.

\[
P(X_1 = x_1, X_2 = x_2, X_3 = x_3, \ldots, X_k = x_k) = \frac{n!}{x_1!x_2!\ldots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}
\]

- \(\sum_{i=1}^{k} p_i = 1 \).
- \(\sum_{i=1}^{k} x_i = n \).
The multinomial distribution

Back to the binomial:

- n independent tries.
- Each try results in success or failure (2) outcomes.
- p is the probability of each try resulting in a success.
- X (number of successes) is a random variable.

Extending to the multinomial:

- Still n independent tries.
- Each try results in multiple (k) outcomes.
- p_i the probability of seeing outcome $i = 1, \ldots, k$.
- X_i is the number of times we see the i-th outcome.

\[
P(X_1 = x_1, X_2 = x_2, X_3 = x_3, \ldots, X_k = x_k) = \frac{n!}{x_1!x_2!\ldots x_k!} p_1^{x_1} p_2^{x_2} \ldots p_k^{x_k}\]

- $\sum_{i=1}^{k} p_i = 1$.
- $\sum_{i=1}^{k} x_i = n$.
The multinomial distribution

Back to the binomial:
- \(n \) independent tries.
- Each try results in success or failure (2) outcomes.
- \(p \) is the probability of each try resulting in a success.
- \(X \) (number of successes) is a random variable.

Extending to the multinomial:
- Still \(n \) independent tries.
- Each try results in \textbf{multiple} (\(k \)) outcomes.
- \(p_i \) the probability of seeing outcome \(i = 1, \ldots, k \).
- \(X_i \) is the number of times we see the \(i \)-th outcome.

\[
P(X_1 = x_1, X_2 = x_2, X_3 = x_3, \ldots, X_k = x_k) = \frac{n!}{x_1!x_2! \ldots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}
\]

- \[k \sum_{i=1}^{k} p_i = 1. \]
- \[k \sum_{i=1}^{k} x_i = n. \]
Let \((X_1, X_2, \ldots, X_k)\) be a multinomial distribution with probabilities \(p_1, p_2, \ldots, p_k\), respectively. Then:

- The marginal distribution of \(X_i\) is a **binomial distribution**.
 - Every \(X_i\) is binomially distributed with parameters \(n, p_i\).
 - “What is the probability that outcome \(i\) has \(x_i\) appearances?”

- The conditional distribution of \(X_1, X_2, \ldots, X_{j-1}, X_{j+1}, \ldots, X_k\) given \(X_j = x_j\) is a **multinomial distribution**.
 - \(X_1, X_2, \ldots, X_{j-1}, X_{j+1}, \ldots, X_k\) (that is, everything except for \(X_j\)) is multinomially distributed with parameters \(n - x_j, q_i = \frac{p_i}{\sum_{\ell=1,\ell\neq j}^k p_\ell}\).
 - “What is the probability that outcomes \(i\) have \(x_i\) appearances given that \(X_j\) has appeared \(x_j\) times?”
Example

Historically, vehicles stopping at a toll station are:

- passenger vehicles (cars) with probability 75%,
- commercial vehicles (trucks) with probability 15%,
- and motorcycles with probability 10%.

A transportation engineer selects 10 vehicles that used the toll at random. What is the probability there were

a) 6 cars, 2 trucks, and 2 motorcycles?

\[
P(X_1 = 6, X_2 = 2, X_3 = 2) = \frac{10!}{6!2!2!} 0.75^6 0.15^2 0.1^2 = 0.0505 = 5.05\%.
\]

b) at most 1 motorcycle?

Marginal distribution of \(X_3\) is binomial with \(n = 10, p_3 = 0.1\):

\[
P(X_3 \leq 1) = P(X_3 = 0) + P(X_3 = 1) = 0.3487 + 0.3874 = 0.7361.
\]

c) 6 cars and 3 trucks, given that there was 1 motorcycle?

Conditional distribution of \(X_1, X_2\) given \(X_3 = 1\) is multinomial with \(n = 10 - x_3 = 9, q_1 = \frac{p_1}{p_1 + p_2} = \frac{5}{6}, q_2 = \frac{p_2}{p_1 + p_2} = \frac{1}{6}\):

\[
P(X_1 = 6, X_2 = 3 | X_3 = 1) = \frac{9!}{6!3!} \left(\frac{5}{6} \right)^6 \left(\frac{1}{6} \right)^3 = 0.1302.
\]
Historically, vehicles stopping at a toll station are:

- passenger vehicles (cars) with probability 75%,
- commercial vehicles (trucks) with probability 15%,
- and motorcycles with probability 10%.

A transportation engineer selects 10 vehicles that used the toll at random. What is the probability there were

a) 6 cars, 2 trucks, and 2 motorcycles?

\[
P(X_1 = 6, X_2 = 2, X_3 = 2) = \frac{10!}{6!2!2!} 0.75^6 0.15^2 0.1^2 = 0.0505 = 5.05\%.
\]

b) at most 1 motorcycle?

Marginal distribution of \(X_3\) is binomial with \(n = 10, p_3 = 0.1\):

\[
P(X_3 \leq 1) = P(X_3 = 0) + P(X_3 = 1) = 0.3487 + 0.3874 = 0.7361.
\]

c) 6 cars and 3 trucks, given that there was 1 motorcycle?

Conditional distribution of \(X_1, X_2\) given \(X_3 = 1\) is multinomial with \(n = 10 - x_3 = 9, q_1 = \frac{p_1}{p_1 + p_2} = \frac{5}{6}, q_2 = \frac{p_2}{p_1 + p_2} = \frac{1}{6}\):

\[
P(X_1 = 6, X_2 = 3|X_3 = 1) = \frac{9!}{6!3!} \left(\frac{5}{6}\right)^6 \left(\frac{1}{6}\right)^3 = 0.1302.
\]

Multinomial with \(n = 10, p_1 = 0.75, p_2 = 0.15, p_3 = 0.10\).
Historically, vehicles stopping at a toll station are:

- passenger vehicles (cars) with probability 75%,
- commercial vehicles (trucks) with probability 15%,
- and motorcycles with probability 10%.

A transportation engineer selects 10 vehicles that used the toll at random. What is the probability there were

a) 6 cars, 2 trucks, and 2 motorcycles?

\[
P(X_1 = 6, X_2 = 2, X_3 = 2) = \frac{10!}{6!2!2!} 0.75^6 0.15^2 0.1^2 = 0.0505 = 5.05\%.
\]

b) at most 1 motorcycle?

Marginal distribution of \(X_3\) is binomial with \(n = 10, p_3 = 0.1\):

\[
P(X_3 \leq 1) = P(X_3 = 0) + P(X_3 = 1) = 0.3487 + 0.3874 = 0.7361.
\]

c) 6 cars and 3 trucks, given that there was 1 motorcycle?

Conditional distribution of \(X_1, X_2\) given \(X_3\) is multinomial with \(n = 10 - x_3 = 9, q_1 = \frac{p_1}{p_1 + p_2} = \frac{5}{6}, q_2 = \frac{p_2}{p_1 + p_2} = \frac{1}{6}\):

\[
P(X_1 = 6, X_2 = 3 | X_3 = 1) = \frac{9!}{6!3!} \left(\frac{5}{6}\right)^6 \left(\frac{1}{6}\right)^3 = 0.1302.
\]

Multinomial with \(n = 10, p_1 = 0.75, p_2 = 0.15, p_3 = 0.10\).
Example

Historically, vehicles stopping at a toll station are:

- passenger vehicles (cars) with probability 75%,
- commercial vehicles (trucks) with probability 15%,
- and motorcycles with probability 10%.

A transportation engineer selects 10 vehicles that used the toll at random. What is the probability there were

a) 6 cars, 2 trucks, and 2 motorcycles?

\[P(X_1 = 6, X_2 = 2, X_3 = 2) = \frac{10!}{6!2!2!} 0.75^6 0.15^2 0.1^2 = 0.0505 = 5.05\% \]

b) at most 1 motorcycle?

Marginal distribution of \(X_3 \) is binomial with \(n = 10, p_3 = 0.1 \):

\[P(X_3 \leq 1) = P(X_3 = 0) + P(X_3 = 1) = 0.3487 + 0.3874 = 0.7361. \]

c) 6 cars and 3 trucks, given that there was 1 motorcycle?

Conditional distribution of \(X_1, X_2 \) given \(X_3 = 1 \) is multinomial with \(n = 10 - x_3 = 9, q_1 = \frac{p_1}{p_1 + p_2} = \frac{5}{6}, q_2 = \frac{p_2}{p_1 + p_2} = \frac{1}{6} \):

\[P(X_1 = 6, X_2 = 3 | X_3 = 1) = \frac{9!}{6!3!} \left(\frac{5}{6} \right)^6 \left(\frac{1}{6} \right)^3 = 0.1302. \]

Multinomial with \(n = 10, p_1 = 0.75, p_2 = 0.15, p_3 = 0.10 \).
Historically, vehicles stopping at a toll station are:

- passenger vehicles (cars) with probability 75%,
- commercial vehicles (trucks) with probability 15%,
- and motorcycles with probability 10%.

A transportation engineer selects 10 vehicles that used the toll at random. What is the probability there were

a) 6 cars, 2 trucks, and 2 motorcycles?
 \[P(X_1 = 6, X_2 = 2, X_3 = 2) = \frac{10!}{6!2!2!} 0.75^6 0.15^2 0.1^2 = 0.0505 = 5.05\% . \]

b) at most 1 motorcycle?
 \[P(X_3 \leq 1) = P(X_3 = 0) + P(X_3 = 1) = 0.3487 + 0.3874 = 0.7361. \]

c) 6 cars and 3 trucks, given that there was 1 motorcycle?
 \[P(X_1 = 6, X_2 = 3 | X_3 = 1) = \frac{9!}{6!3!} \left(\frac{5}{6} \right)^6 \left(\frac{1}{6} \right)^3 = 0.1302. \]

Multinomial with \(n = 10, p_1 = 0.75, p_2 = 0.15, p_3 = 0.10. \)
The bivariate normal distribution

- Bivariate: two random variables X, Y.
- Normal: both normally distributed.
 - mean: μ_X, μ_Y, resp.
 - variance: σ^2_X, σ^2_Y, resp.
 - possibly correlated with correlation ρ_{XY}.

Then, two random variables X and Y with the above parameters are jointly distributed with a bivariate random distribution if:

$$f_{XY}(x, y) = \frac{1}{2\pi \sigma_X \sigma_Y \sqrt{1 - \rho_{XY}^2}} \cdot e^{-\frac{z^2}{2(1 - \rho_{XY}^2)}},$$

where $z = \frac{(x - \mu_X)^2}{\sigma_X^2} - \frac{2\rho_{XY}(x - \mu_X)(y - \mu_Y)}{\sigma_X \sigma_Y} + \frac{(y - \mu_Y)^2}{\sigma_Y^2}$

We may contrast with the simple normal distribution:

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}}.$$
The bivariate normal distribution

- Bivariate: two random variables X, Y.
- Normal: both normally distributed.
 - mean: μ_X, μ_Y, resp.
 - variance: σ^2_X, σ^2_Y, resp.
 - possibly correlated with correlation ρ_{XY}.

Then, two random variables X and Y with the above parameters are jointly distributed with a bivariate random distribution if:

$$f_{XY}(x, y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1 - \rho^2_{XY}}} \cdot e^{\frac{-z}{2}} \cdot (1 - \rho^2_{XY})$$

where $z = \frac{(x-\mu_X)^2}{\sigma^2_X} - \frac{2\rho_{XY}(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma^2_Y}$

We may contrast with the simple normal distribution:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma}}.$$
The bivariate normal distribution

- Bivariate: two random variables \(X, Y \).
- Normal: both normally distributed.
 - mean: \(\mu_X, \mu_Y \), resp.
 - variance: \(\sigma_X^2, \sigma_Y^2 \), resp.
 - possibly correlated with correlation \(\rho_{XY} \).

Then, two random variables \(X \) and \(Y \) with the above parameters are jointly distributed with a bivariate random distribution if:

\[
f_{XY}(x, y) = \frac{1}{2\pi \sigma_X \sigma_Y \sqrt{1 - \rho_{XY}^2}} \cdot e^{-\frac{z}{2(1 - \rho_{XY}^2)}},
\]

where \(z = \frac{(x-\mu_X)^2}{\sigma_X^2} - \frac{2\rho_{XY}(x-\mu_X)(y-\mu_Y)}{\sigma_X \sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} \).

We may contrast with the simple normal distribution:

\[
f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.
\]
The bivariate normal distribution

- Bivariate: two random variables X, Y.
- Normal: both normally distributed.
 - mean: μ_X, μ_Y, resp.
 - variance: σ^2_X, σ^2_Y, resp.
 - possibly correlated with correlation ρ_{XY}.

Then, two random variables X and Y with the above parameters are jointly distributed with a bivariate random distribution if:

$$f_{XY}(x, y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1 - \rho^2_{XY}}} \cdot e^{-\frac{-z}{2(1 - \rho^2_{XY})}},$$

where $z = \frac{(x-\mu_X)^2}{\sigma^2_X} - 2\rho_{XY}\frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma^2_Y}$.

We may contrast with the simple normal distribution:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
The bivariate normal distribution

- **Bivariate**: two random variables X, Y.
- **Normal**: both normally distributed.
 - mean: μ_X, μ_Y, resp.
 - variance: σ^2_X, σ^2_Y, resp.
 - *possibly* correlated with correlation ρ_{XY}.

Then, two random variables X and Y with the above parameters are jointly distributed with a bivariate random distribution if:

$$f_{XY}(x, y) = \frac{1}{2\pi \sigma_X \sigma_Y \sqrt{1 - \rho^2_{XY}}} \cdot e^{-\frac{z^2}{2(1 - \rho^2_{XY})}},$$

where $z = \frac{(x - \mu_X)^2}{\sigma^2_X} - 2\rho_{XY} \frac{(x - \mu_X)(y - \mu_Y)}{\sigma_X \sigma_Y} + \frac{(y - \mu_Y)^2}{\sigma^2_Y}$.

We may contrast with the simple normal distribution:

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}}.$$
Let $\mu_X = 2, \sigma_X = 1$ and $\mu_Y = -1, \sigma_Y = 1$.

When $\rho_{XY} = 0$:

![3D graph and 2D contour plot of a bivariate normal distribution with specified means and standard deviations.](image-url)
Let $\mu_X = 2$, $\sigma_X = 1$ and $\mu_Y = -1$, $\sigma_Y = 1$.

When $\rho_{XY} = 0$:

![3D graph of bivariate normal distribution](image1)

![Contour plot of bivariate normal distribution](image2)
The bivariate normal distribution

Let $\mu_X = 2, \sigma_X = 1$ and $\mu_Y = -1, \sigma_Y = 1$.

When $\rho_{XY} > 0$:

\[\begin{bmatrix} x \\ y \end{bmatrix} \]

\[\text{pdf} \]

\[\begin{bmatrix} x \\ y \end{bmatrix} \]

\[\text{cdf} \]
The bivariate normal distribution

Let $\mu_X = 2, \sigma_X = 1$ and $\mu_Y = -1, \sigma_Y = 1$.

When $\rho_{XY} < 0$:

![3D contour plot of the bivariate normal distribution](image1)

![Contour plot of the bivariate normal distribution](image2)
The **marginal** distributions for the bivariate normal distribution are:

\[
X \sim \mathcal{N}(\mu_X, \sigma_X^2) \\
Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)
\]

The **conditional** distribution of \(X\) given \(Y = y\) is also a normal distribution with mean and variance found by:

\[
\begin{align*}
\mu_{X|Y=y} & = \mu_X + \rho_{XY} \left(\frac{\sigma_X}{\sigma_Y} \right) (y - \mu_Y) \\
\sigma_{X|Y=y}^2 & = \sigma_X^2 \left(1 - \rho_{XY}^2 \right)
\end{align*}
\]

Food for thought:

- what if \(X\) and \(Y\) are not correlated?
- what if they are *perfectly* correlated?
Marginal and conditional distributions

The **marginal** distributions for the bivariate normal distribution are:

\[X \sim \mathcal{N} (\mu_X, \sigma_X^2) \]
\[Y \sim \mathcal{N} (\mu_Y, \sigma_Y^2) \]

The **conditional** distribution of \(X \) given \(Y = y \) is also a normal distribution with mean and variance found by:

\[
\mu_{X|Y=y} = \mu_X + \rho_{XY} \left(\frac{\sigma_X}{\sigma_Y} \right) (y - \mu_Y) \\
\sigma_{X|Y=y}^2 = \sigma_X^2 \left(1 - \rho_{XY}^2 \right)
\]

Food for thought:
- what if \(X \) and \(Y \) are not correlated?
- what if they are *perfectly* correlated?
Marginal and conditional distributions

The **marginal** distributions for the bivariate normal distribution are:

\[
X \sim \mathcal{N}(\mu_X, \sigma_X^2) \\
Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)
\]

The **conditional** distribution of \(X\) given \(Y = y\) is also a normal distribution with mean and variance found by:

\[
\mu_{X|Y=y} = \mu_X + \rho_{XY} \left(\frac{\sigma_X}{\sigma_Y} \right) (y - \mu_Y) \\
\sigma_{X|Y=y}^2 = \sigma_X^2 \left(1 - \rho_{XY}^2 \right)
\]

Food for thought:
- what if \(X\) and \(Y\) are not correlated?
- what if they are *perfectly* correlated?
Example

Assume $X \sim \mathcal{N}(2, 9)$ and $Y \sim \mathcal{N}(4, 4)$ with $\rho_{XY} = 0.5$.

1. What is $P(X \leq 1)$? What is $P(Y > 6)$?
2. What is $P(X \leq 1 \mid Y = 3)$?

Answer:

1. X and Y follow a normal distribution. Hence:

$$P(X \leq 1) = \Phi\left(\frac{1 - 2}{3}\right) = \Phi(-1/3) = 0.371.$$

$$P(Y > 6) = 1 - P(Y \leq 6) = 1 - \Phi\left(\frac{6 - 4}{2}\right) = 1 - \Phi(1) = 0.159.$$

2. This is a conditional pdf ($X \mid Y = y$ is normally distributed):

$$\mu_{X \mid Y = y} = \mu_X + \rho_{XY} \left(\frac{\sigma_X}{\sigma_Y}\right) (y - \mu_Y) = \frac{5}{4},$$

$$\sigma^2_{X \mid Y = y} = \sigma^2_X \left(1 - \rho^2_{XY}\right) = \frac{27}{4}.$$
Example

Assume \(X \sim \mathcal{N}(2, 9) \) and \(Y \sim \mathcal{N}(4, 4) \) with \(\rho_{XY} = 0.5 \).

1. What is \(P(X \leq 1) \)? What is \(P(Y > 6) \)?

2. What is \(P(X \leq 1 | Y = 3) \)?

Answer:

1. \(X \) and \(Y \) follow a normal distribution. Hence:

\[
P(X \leq 1) = \Phi\left(\frac{1 - 2}{3}\right) = \Phi(-1/3) = 0.371.
\]

\[
P(Y > 6) = 1 - P(Y \leq 6) = 1 - \Phi\left(\frac{6 - 4}{2}\right) = 1 - \Phi(1) = 0.159.
\]

2. This is a conditional pdf (\(X | Y = y \) is normally distributed):

\[
\mu_{X|Y=y} = \mu_X + \rho_{XY} \left(\frac{\sigma_X}{\sigma_Y}\right) (y - \mu_Y) = \frac{5}{4}
\]

\[
\sigma^2_{X|Y=y} = \sigma^2_X \left(1 - \rho^2_{XY}\right) = \frac{27}{4}
\]

\[
P(X \leq 1 | Y = 3) = \Phi\left(\frac{1 - 5}{\sqrt{27}}\right) = \Phi(-0.1) = 0.46
\]
Example

Assume $X \sim \mathcal{N}(2, 9)$ and $Y \sim \mathcal{N}(4, 4)$ with $\rho_{XY} = 0.5$.

1. What is $P(X \leq 1)$? What is $P(Y > 6)$?
2. What is $P(X \leq 1 | Y = 3)$?

Answer:

1. X and Y follow a normal distribution. Hence:

$$P(X \leq 1) = \Phi\left(\frac{1 - 2}{3}\right) = \Phi\left(-\frac{1}{3}\right) = 0.371.$$

$$P(Y > 6) = 1 - P(Y \leq 6) = 1 - \Phi\left(\frac{6 - 4}{2}\right) = 1 - \Phi(1) = 0.159.$$

2. This is a conditional pdf $(X | Y = y)$ is normally distributed:

$$\mu_{X|Y=y} = \mu_X + \rho_{XY} \left(\frac{\sigma_X}{\sigma_Y}\right) (y - \mu_Y) = \frac{5}{4}$$

$$\sigma^2_{X|Y=y} = \sigma^2_X \left(1 - \rho^2_{XY}\right) = \frac{27}{4}$$

$$P(X \leq 1 | Y = 3) = \Phi\left(\frac{1 - \frac{5}{4}}{\frac{\sqrt{27}}{2}}\right) = \Phi(-0.1) = 0.46$$
Example

Assume $X \sim \mathcal{N}(2, 9)$ and $Y \sim \mathcal{N}(4, 4)$ with $\rho_{XY} = 0.5$.

1. What is $P(X \leq 1)$? What is $P(Y > 6)$?
2. What is $P(X \leq 1 | Y = 3)$?

Answer:

1. X and Y follow a normal distribution. Hence:

 $P(X \leq 1) = \Phi\left(\frac{1 - 2}{3}\right) = \Phi(-1/3) = 0.371.$

 $P(Y > 6) = 1 - P(Y \leq 6) = 1 - \Phi\left(\frac{6 - 4}{2}\right) = 1 - \Phi(1) = 0.159.$

2. This is a conditional pdf ($X | Y = y$ is normally distributed):

 $\mu_{X|Y=y} = \mu_X + \rho_{XY} \left(\frac{\sigma_X}{\sigma_Y}\right) (y - \mu_Y) = \frac{5}{4}$

 $\sigma_{X|Y=y}^2 = \sigma_X^2 \left(1 - \rho_{XY}^2\right) = \frac{27}{4}$

 $P(X \leq 1 | Y = 3) = \Phi\left(\frac{1 - \frac{5}{4}}{\sqrt{\frac{27}{4}}} \right) = \Phi(-0.1) = 0.46$
Example

Assume \(X \sim \mathcal{N}(2, 9) \) and \(Y \sim \mathcal{N}(4, 4) \) with \(\rho_{XY} = 0.5 \).

3 What is \(P(X \leq 1 \cap Y > 6) \)?

Answer: We now have to use the \(f_{XY}(x, y) \) formula for a bivariate normal distribution. Recall that:

\[
f_{XY}(x, y) = \frac{1}{2\pi \sigma_X \sigma_Y \sqrt{1 - \rho_{XY}^2}} \cdot e^{-\frac{z}{2}},
\]

where \(z = \frac{(x - \mu_X)^2}{\sigma_X^2} - \frac{2\rho_{XY}(x - \mu_X)(y - \mu_Y)}{\sigma_X \sigma_Y} + \frac{(y - \mu_Y)^2}{\sigma_Y^2} \).

Using the above:

\[
P(X \leq 1 \cap Y > 6) = \int_{-\infty}^{1} \int_{6}^{\infty} f_{XY}(x, y) \, dy \, dx = \int_{-\infty}^{1} \int_{6}^{\infty} \frac{1}{6 \cdot \sqrt{3} \cdot \pi} \cdot e^{-\frac{2}{3} \left(\frac{4x^2 + 9y^2 - 60y + 8x - 6xy + 80}{36} \right)} \, dy \, dx = 0.004.
\]
Example

Assume $X \sim \mathcal{N}(2, 9)$ and $Y \sim \mathcal{N}(4, 4)$ with $\rho_{XY} = 0.5$.

What is $P(X \leq 1 \cap Y > 6)$?

Answer: We now have to use the $f_{XY}(x, y)$ formula for a bivariate normal distribution. Recall that:

$$f_{XY}(x, y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1 - \rho_{XY}^2}} \cdot e^{-\frac{-z}{2(1 - \rho_{XY}^2)}},$$

where $z = \frac{(x - \mu_X)^2}{\sigma_X^2} - \frac{2\rho_{XY}(x - \mu_X)(y - \mu_Y)}{\sigma_X\sigma_Y} + \frac{(y - \mu_Y)^2}{\sigma_Y^2}$

Using the above:

$$P(X \leq 1 \cap Y > 6) = \int_{-\infty}^{\infty} \int_{6}^{\infty} f_{XY}(x, y) dy dx =$$

$$= \int_{-\infty}^{1} \int_{6}^{\infty} \frac{1}{6 \cdot \sqrt{3} \cdot \pi} \cdot e^{-\frac{2}{3} \cdot \left(\frac{4x^2 + 9y^2 - 60y + 8x - 6xy + 80}{36}\right)} dy dx =$$

$$= 0.004.$$
Example

Assume $X \sim \mathcal{N}(2, 9)$ and $Y \sim \mathcal{N}(4, 4)$ with $\rho_{XY} = 0.5$.

What is $P(X \leq 1 \cap Y > 6)$?

Answer: We now have to use the $f_{XY}(x, y)$ formula for a bivariate normal distribution. Recall that:

$$f_{XY}(x, y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1 - \rho_{XY}^2}} \cdot e^{-\frac{z}{2(1 - \rho_{XY}^2)}},$$

where $z = \frac{(x-\mu_X)^2}{\sigma_X^2} - \frac{2\rho_{XY}(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \frac{(y-\mu_Y)^2}{\sigma_Y^2}$

Using the above:

$$P(X \leq 1 \cap Y > 6) = \int_{-\infty}^{1} \int_{6}^{\infty} f_{XY}(x, y) dy dx =$$

$$= \int_{-\infty}^{1} \int_{6}^{\infty} \frac{1}{6 \cdot \sqrt{3} \cdot \pi} \cdot e^{-\frac{2}{3} \left(\frac{4x^2 + 9y^2 - 60y + 8x - 6xy + 80}{36} \right)} =$$

$$= 0.004.$$