
IE 300: Analysis of data

Chrysafis Vogiatzis

Written during Fall 2020 to accompany video lectures, worksheets, in-class and at home activities, quizzes,
and exams. If you would like this material, too, please email me!

https://chvogiat.github.io
mailto:chvogiat@gmail.com


Dedicated to my wife, Eleftheria Kontou, who supported me throughout the
COVID-19 quarantine period, and our whole lives.

Dedicated of course to all of the students in the Fall 2020 semester of IE 300.
Thank you for being so kind and flexible.

Dedicated to our dog, Ralphie, even though he is responsible for some of the
typos here



Analysis of data
Chrysafis Vogiatzis

Contents

1. Random experiments, sample spaces, and events 1
Motivation: Monopoly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Motivation: A card game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Sets and set operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Counting 11
Motivation: quantifying probabilities . . . . . . . . . . . . . . . . . . . . . 11

Motivation: equally likely outcomes . . . . . . . . . . . . . . . . . . . . . . 12

Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

From counting to calculating probability. . . . . . . . . . . . . . . . . . . 17

3. Basic probability theory 20
Motivation: Will I miss my flight?. . . . . . . . . . . . . . . . . . . . . . . . 20

Motivation: Data collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Probabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Unions and intersections of events . . . . . . . . . . . . . . . . . . . . . . . 22

Conditional probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

The multiplication rule for probabilities . . . . . . . . . . . . . . . . . . . 29

Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4. Bayes’ theorem 30
Motivation: The Mantoux test. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Motivation: Pilot season . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

The law of total probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bayes’ theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5-6. Discrete random variables 42
Motivation: 2-engine vs. 4-engine aircraft . . . . . . . . . . . . . . . . . . 42

Motivation: Big in Japan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Discrete random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



ie 300 ii

7. Continuous random variables: the uniform and the ex-
ponential distribution 61
Motivation: continuous vs. discrete random variables . . . . . . . . . 61

Motivation: Big in Japan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Continuous random variables. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

The uniform distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

The exponential distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8. Continuous random variables: the Gamma/Erlang distri-
bution and the normal distribution 76
Motivation: Congratulations, you are our 100,000th customer! . . . 76

Motivation: Food poisoning and how to avoid it . . . . . . . . . . . . . 76

The Gamma and the Erlang distribution . . . . . . . . . . . . . . . . . . . 77

The normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

9. Expectations and variances 88
Motivation: Printer lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Expectation and variance of well-known distributions . . . . . . . . . 96

Food for thought . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10. The central limit theorem 103
Motivation: The normal distribution . . . . . . . . . . . . . . . . . . . . . . 103

Motivation: Testing a hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 103

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Motivating the central limit theorem. . . . . . . . . . . . . . . . . . . . . . 103

The central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

11. Jointly distributed random variables 110
Motivation: “Can you hear me now”? . . . . . . . . . . . . . . . . . . . . . 110

Jointly distributed random variables . . . . . . . . . . . . . . . . . . . . . . 110

Jointly distributed discrete random variables. . . . . . . . . . . . . . . . 112

Jointly distributed continuous random variables . . . . . . . . . . . . . 119

Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

12. Jointly distributed random variables: extensions 126
Motivation: What should I expect? . . . . . . . . . . . . . . . . . . . . . . . 126

Motivation: Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Expectations and variances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



ie 300 iii

Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

When x and y restrict each other . . . . . . . . . . . . . . . . . . . . . . . . 138

Extension to more than 2 random variables . . . . . . . . . . . . . . . . . 141

13. Jointly distributed random variables: some common dis-
tributions 143
Motivation: Success or failure? More like full success, or somewhat

success, or ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Motivation: Normally distributed random variables with correla-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Distribution of a function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

The multinomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

The bivariate normal distribution . . . . . . . . . . . . . . . . . . . . . . . . 150

14. Descriptive statistics 156
Motivation: Summarizing information . . . . . . . . . . . . . . . . . . . . 156

Probabilities and statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Descriptive statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

15-16. Point estimators 178
Motivation: Inferring parameters . . . . . . . . . . . . . . . . . . . . . . . . 179

Motivation: Predicting an election . . . . . . . . . . . . . . . . . . . . . . . 179

Statistical inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Sampling distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Point estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

What makes a good estimator? . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

17-18. Methods of estimation: the method of moments and
maximum likelihood estimation 190
Motivation: “I guess it is exponentially distributed. But what is λ?”

190

Motivation: Estimating the mortality risk . . . . . . . . . . . . . . . . . . 190

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Method of moments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . 203

19. Methods of estimation: Bayesian estimation 210
Motivation: Heads or Tails? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210



ie 300 iv

Quick review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Bayesian estimation through an example. . . . . . . . . . . . . . . . . . . 211

Bayesian estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

20. Confidence intervals for single population means 221
Motivation: Point estimates lie . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Motivation: Elections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Quick review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

An introduction to confidence intervals. . . . . . . . . . . . . . . . . . . . 223

Sampling distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Single population confidence intervals . . . . . . . . . . . . . . . . . . . . 228

21. Confidence intervals for single population variances and
proportions 238
Single population confidence intervals . . . . . . . . . . . . . . . . . . . . 238

Population variance confidence intervals. . . . . . . . . . . . . . . . . . . 239

Sampling distribution for σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Population proportion confidence intervals . . . . . . . . . . . . . . . . . 242

22. Review on confidence intervals 248
Quick review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

What does a confidence interval reveal? . . . . . . . . . . . . . . . . . . . 248

Reviewing critical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Reviewing confidence intervals for means . . . . . . . . . . . . . . . . . . 250

Reviewing confidence intervals for variances. . . . . . . . . . . . . . . . 251

Reviewing confidence intervals for proportions . . . . . . . . . . . . . . 252

Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Interactive (and hopefully interesting?) activities you can do in the
classroom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

23. Confidence intervals for two populations 256
Motivation: Do masks work? . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Motivation: Does IE 300 have more variable grades than IE 310?
257

Two population confidence intervals . . . . . . . . . . . . . . . . . . . . . . 258

Difference in means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Confidence intervals for the ratio of the variances of two normally
distributed populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Confidence intervals for the difference of the proportions of two
populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264



ie 300 v

24-25. Introduction to hypothesis testing: hypothesis test-
ing for proportions 269
Motivation: True or False? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Motivation: Grainger College of Engineering internships. . . . . . . 269

Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Hypothesis testing for proportions . . . . . . . . . . . . . . . . . . . . . . . 275

26-27. Hypothesis testing for means and variances 286
P-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Hypothesis testing for means . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Hypothesis testing for normally distributed population variances
292

28-29. Hypothesis testing for two populations 294
Motivation: weather differences . . . . . . . . . . . . . . . . . . . . . . . . . 294

Motivation: electoral considerations . . . . . . . . . . . . . . . . . . . . . . 294

Motivation: online education and audiovisual tools . . . . . . . . . . . 294

Hypothesis testing for two populations. . . . . . . . . . . . . . . . . . . . 295

Hypothesis testing for means of two normally distributed popu-
lations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Hypothesis testing for the ratio of the variances of two normally
distributed populations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Hypothesis testing for the difference in the proportions of two pop-
ulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

30-31. Linear regression and significance 306
Motivation: Physical activity and obesity . . . . . . . . . . . . . . . . . . 306

Motivation: Education level and income . . . . . . . . . . . . . . . . . . . 307

Model building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Simple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Significance of simple linear regression . . . . . . . . . . . . . . . . . . . . 317

32. Multiple linear regression 324
Motivation: Maintenance fees . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Motivation: realtor.com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

The ANOVA identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

The R2 parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Multiple linear regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

One big comprehensive example . . . . . . . . . . . . . . . . . . . . . . . . 337



ie 300 vi

33. Regression extensions and model building 340
Motivation: Higher degree terms . . . . . . . . . . . . . . . . . . . . . . . . 340

Motivation: Model building . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351



ie 300 1

1. Random experiments, sample
spaces, and events

Learning objectives

After this lecture, we will be able to:

• Give examples of experiments, sample spaces, and events.

• Explain sets and why they are used to describe events.

• Use Venn diagrams to represent events.

• Describe events using set operations.

• Give examples and recognize mutually exclusive events.

• Calculate the cardinality of an event.

Motivation: Monopoly

Is Monopoly a game of luck or strategy? It is your turn and your
friends have built hotels everywhere. You need to roll two dies and
get a 6 or a 7 to avoid paying your friends and declaring bankruptcy.
Everyone expects you to lose: what are the “chances” you will roll a 6

or a 7, after considering all the scenarios?
In this first lecture, we will introduce and discuss all the necessary

definitions in order to be able to quantify risks and chances.

Motivation: A card game

You are playing a card game on a deck with 52 cards of 4 different
suits: ♥,♣,♦,♠. You also know that there are 13 cards of each suit.
The game is simple: pick a card, any card. If that card is red, you win;
otherwise, you lose. For the intents of this game, we assume that the
order of numbers is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 followed by three face
cards noted as J, Q, K.

Should we play? How should we play? Are there ways to mathe-
matically quantify our risks and our gains?

Definitions

Random experiments

A random experiment1 is defined as an activity or situation where 1 Examples include the flip of a coin
(could be Heads or Tails) or rolling a
six-sided dice (could get any integer
number between 1 and 6.

the outcome obtained may be different, even when executed the same
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way. This randomness in the outcome could be due to the inherent
nature of the experiment, due to different levels of skill required to
get a better result, or due to differences in instrumentation.

What are some other random experiments you can think of?
Is measuring the width of a coffee table using a ruler a ran-
dom experiment? How about cooking? Is a football game an
experiment?

Back to the card game

Is our card game a random experiment? In essence, if you
always follow the same strategy (e.g., pick the card at the top,
or pick the card at the bottom), are you guaranteed the same
result?

Sample spaces

With the term sample space2, we refer to the set of all possible out- 2 In a game of tic-tac-toe, the pos-
sible outcomes are win, lose,
and tie, whereas in a graded
course, the possible outcomes are
A, A−, B+, B, B−, . . . , F.

comes that can be obtained for a random experiment.
A sample space can have a finite or countably infinite number of

possible outcomes (e.g., “1, 2, 3, 4, 5, or 6” or any integer number) or
it can be an interval of real numbers (e.g., any number between 0 and
1, [0, 1]). We call the first type of sample space discrete. We will focus
on that type of sample spaces in the beginning of the semester. The
second type of sample space (where the outcome is a real number
belonging to some interval) is called continuous. The rest of this
lecture is devoted to discrete sample spaces.

Is food poisoning a possible outcome of cooking? Is snow a
possible outcome for tomorrow’s weather?

Define the sample space for rolling a die and for rolling two
dies. Define the sample space for the distance of any person at
any point from the closest McDonald’s.

Give an example of a sample space with a finite number of
possible outcomes, and an example of a sample space defined
over an interval of real numbers.
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Back to the card game

Let us think about our card game. The number of outcomes
is finite, that is for sure, so our sample space is discrete. But
what is our sample space? There are multiple ways to describe
the sample space here: S = {1♥, 2♥, . . . , K♥, 1♣, 2♣, . . . , K♠}
or S = {red, black} or even S = {♥,♣,♦,♠}.

The selection of the proper sample space is guided by what
we are trying to achieve. In our motivation, we spoke about
the color of the suit, so a sample space of S = {red, black}
seems the better choice.

Events

The term event3 is used to define a subset of outcomes from the 3 For a student taking a graded class,
an event can be to pass or to get a grade
higher than or equal to a B.

sample space. It can be just a single outcome, or it can include many
of the possible outcomes from a sample space. That is, an event can
be a combination of outcomes (“get a 4 or more in a six-sided die”)
or the negation of an outcome (“no rain”). An event is simple if it
has one outcome (“get dealt a Queen of ♣ in a deck of cards”) or
compound if it includes multiple outcomes (“don’t lose” implies a win
or a tie or “pass a class” could mean a D, C, B, or an A grade).

Back to the card game

Let us define some events for tomorrow’s weather.
We could possibly have the following events:

• sunny.

• no rain.

• sunny or cloudy.

Notice how there is a “natural” order of events: no rain in-
cludes sunny as a possible outcome, sunny implies no rain.
We could use that to make a first estimate of which event is
likelier to happen, no?

Is “less than 10 minutes” a possible event for the experiment
of counting the time until the next bus arrives? Is “farther
than 10 miles” an event for the closest gas station?
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In a board game where players roll two six-sided dies, is “get-
ting a 10” a simple or a compound event?

Back to the card game

Let us return to the card game from our motivation. Assume
that

S = {1♥, 2♥, . . . , K♥, 1♣, 2♣, . . . , K♠} ,

then the event E “picking a red card” is a compound event as
there are 26 outcomes that satisfy it and

E = {1♥, 2♥, . . . , K♥, 1♦, . . . , K♦} .

Had we picked that S = {red, black}, then the event E “picking
a red card” is a simple event as there is only one outcome that
satisfies it (note that E = red in this case).

Sets and set operations

Set operations

Set operations are a very useful way to describe events based on
several outcomes. The most common set operations (and the ones we
will predominantly use in this class) are:

• The union of two events E1, E2 as E1 ∪ E2
4. 4 Either event E1 or E2 (or both!) should

happen.

• The intersection of two events E1, E2 as E1 ∩ E2
5. 5 Both events E1 and E2 should happen.

• The complement of an event E as E (sometimes is also written as
Ec or E′) 6. 6 Any other event but E.

• The relative complement (sometimes termed as the difference) of an
event E2 from event E1 as E1 \ E2

7. 7 All outcomes in E1 that are not also in E2.

Set operations are nicely described through the use of Venn dia-
grams. Consider the following examples, where the whole sample
space is A, B, and C.
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1. A and B should both happen→ A ∩ B:

A B

C

2. B or C should happen→ B ∪ C:

A B

C

3. Neither A nor B should happen→ A ∩ B: 8 8 This can also be expressed as:

• Only C should happen but not A
nor B → C \ (A ∪ B) .

• A or B should not happen→
(A ∪ B).A B

C

4. A, B, and C should all happen→ A ∩ B ∩ C:
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A B

C

5. A but not B should happen→ A \ B:

A B

C

Describe mathematically and in English these two diagrams.

A B

C

A B

C

Some more definitions about sets:

• A set that contains no elements (outcomes) is called an empty or a
null set, and is denoted by ∅.
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• The sample space is a set containing all outcomes and is typically
denoted by S.

• We say that event E1 is a subset of event E2 if all outcomes of event
E1 are included in event E2

9. 9 In English, this also implies that event
E1 happening immediately signals that
event E2 is happening, too.– We denote this as E1 ⊆ E2.

– By definition, ∅ ⊆ S.

In the Venn diagrams earlier, we had S = A ∪ B ∪ C, as these
were the only three possible outcomes.

Give an example of a two events where one is a subset of the
other.

Finally, we say that two events are mutually exclusive 10 if they 10 You cannot both get a B in a class and
f ail the class at the same time.contain no common outcomes. Mathematically, two events E1, E2 are

mutually exclusive if
E1 ∩ E2 = ∅.

Give an example of a pair of mutually exclusive events.

Back to the card game

Assume that

S = {1♥, 2♥, . . . , K♥, 1♣, 2♣, . . . , K♠} ,

and consider three events:

• A =“get a card with the value 3 or less”

• B =“get a red card”

• C =“get a face card”

What is:

• the union of A and B?

A ∪ B: “get a card with the value of 3 or less or a red card.”

– The event happens if we get 7♥.

– The event happens if we get 2♦.

– The event happens if we get 1♠.

– The event does not happen if we get 10♣.
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Back to the card game

What is:

• the intersection of B and C?

B ∩ C: “get a red and face card.”

– The event happens if we get Q♥.

– The event happens if we get J♦.

– The event does not happen if we get 1♠.

– The event does not happen if we get K♣.

• the intersection of A and C?

B∩C: “get face card that is less than or equal to 3 in value.”

– The event never happens.

– In set notation, we have B ∩ C = ∅.

– B and C are mutually exclusive events.

• the complement of C?

C: “not get a face card.”

– The event does not happen if we get Q♥.

– The event does not happen if we get J♦.

– The event happens if we get 1♠.

– The event happens if we get 6♣.

Set operation laws

Assume S is the sample space, and A, B, C are some events. Then:

1. A ∪ A = S, A ∩ A = ∅, A = A.

2. A ∪ B = B ∪ A and A ∩ B = B ∩ A.

3. De Morgan’s laws:

• (A ∪ B) = A ∩ B.

• (A ∩ B) = A ∪ B.

4. A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C.

5. A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) , A ∩ (B ∪ C) = (A ∩ B) ∪
(A ∩ C).
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Cardinality

The cardinality of an event E 11 is the number of outcomes that it 11 In a graded course (where
S = {A, A−, B+, B, B−, . . . F}, the
cardinality of E = grade ≥ B is 4
(B, B+, A−, and A), that is |E| = 4.

contains and it is denoted by |E|. Some important cardinality proper-
ties are:

• E = ∅ =⇒ |E| = 0.

• If E1 is a subset of E2, then |E1| ≤ |E2|.

• If events E1, E2 are mutually exclusive, then

– |E1 ∩ E2| = 0.

– |E1 ∪ E2| = |E1|+ |E2|.

• For any two events E1, E2, then

– |E1 ∪ E2| = |E1|+ |E2| − |E1 ∩ E2| 12. 12 Proving this is part of your worksheet
for the day.

Back to the card game

Let us finally discuss the actual problem of our motivation.
Assume, once again, that our sample space is defined as:

S = {1♥, 2♥, . . . , K♥, 1♣, 2♣, . . . , K♠} .

Our game states that we win if we pick a red card. There are
13 ♥ and 13 ♦ cards in the game. This gives us a cardinality
of 26 outcomes. Recall that in total, our sample space consists
of 52 outcomes, that is |S| = 52. One might want to reason
then that we have 26 favorable outcomes in a total of 52 out-
comes...
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A class at the University of Illinois at Urbana-Champaign is
taught by three different professors. The number of students
that took the class and the grades they received are shown in
the following table.

Letter Grade Professor 1 Professor 2 Professor 3 Total
A 108 20 30 158

B 44 49 46 139

C 11 15 15 41

D 0 1 8 9

Total 163 85 99 347

• How many students received an A in Professor 1’s class?

• How many students were in Professor 1’s class or got an A?

• Are the students who got an A and the students who got a
B in Professor 1’s class mutually exclusive events?

• How many students got an A but were not in Professor 1’s
class?

Back to Monopoly

In the beginning of this lecture, we only needed to roll a 6 or
a 7 to “survive” another round (so to speak). Let us finish this
lecture with the following thought process:
1. The sample space of rolling two dies is:

S = {(1, 1) , (1, 2) , (1, 3) , . . . , (1, 6) , (2, 1) , . . . , (6, 6)} .

2. Counting all possible outcomes, we have that S = |36|.

3. The event “roll a 6” contains 5 outcomes:

{(1, 5) , (2, 4) , (3, 3) , (4, 2) , (5, 1)} .

4. The event “roll a 7” contains 6 outcomes:

{(1, 6) , (2, 5) , (3, 4) , (4, 3) , (5, 2) , (6, 1)} .

5. “Roll a 6” and “Roll a 7” are mutually exclusive, hence we
have a total of

5 + 6 = 11 favorable outcomes.

6. One could again argue that our “chances” albeit small are
not that small after all..
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2. Counting

Learning objectives

After this lecture, we will be able to:

• Count how many outcomes satisfy an event.

• Recall the multiplication rule to count.

• Use the multiplication rule to count.

• Differentiate between permutations and combinations.

• Use permutations and combinations to count.

• Differentiate between different types of permutations.

• Interpret probabilities and recall fundamental probability
properties.

Motivation: quantifying probabilities

When we discuss probability, there are two worldviews:

1. the frequentist view: which states that the probability of an event
happening represents a relative frequency of the times the event
happens versus all the times the random experiment is conducted
(“in the long run”).

2. the Bayesian view: which states that probability is a subjective
measure of quantifying the likelihood of an event happening (as a
“degree of belief”).

Definition 1 (Probability) With every event, we associate a real num-
ber called probability to represent the likelihood of that event happening.
Probabilities satisfy three main rules 13: 13 Also known as the Kolmogorov

axioms of probability.

1. P(E) ≥ 0, for any event E.

2. If an event E comprises the whole sample space (in which case, we write
that E = S), then P(E) = 1.

3. If E1, E2, . . . , Em are m mutually exclusive events 14, then 14 See the previous lecture.

P (E1 ∪ E2 ∪ . . . ∪ Em) = P (E1) + P (E2) + . . . + P (Em) ,

or even more concisely:

P

(
m⋃

i=1

Ei

)
=

m

∑
i=1

P(Ei).
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From the definition, we can deduce that all probabilities are in
[0, 1], where a probability of 0 implies that an event can never hap-
pen, and a probability of 1 implies that an event is certain (will al-
ways happen).

Motivation: equally likely outcomes

When the outcomes in a discrete random experiment with sample
space S are equally probable, we assume that the probability of each
outcome happening is 1

|S| . Hence, our question becomes:

“how can we count all favorable outcomes and contrast them to all
possible outcomes to derive a measure of probability?”

Why would that be useful?

Counting

The multiplication rule

In the previous lecture and worksheet, we fully enumerated all pos-
sible outcomes. For example, rolling two dies results in a total of 36

outcomes:

S = {(1, 1) , (1, 2) , (1, 3) , . . . , (1, 6) , (2, 1) , . . . , (6, 6)} .

What happens if I need to find the cardinality of the sample space of
rolling 10 dies?

A new burrito restaurant

In a new burrito place, you are allowed to choose only one of
two types of tortillas (flour and wheat), only one of four types
of “meats” (chicken, pork, steak, no meat), and only one of two
types of beans (refried and black beans). A food critic needs
to try one burrito every day until they have tried all possible
burritos. How many days will they be visiting the restaurant
to do that?

When our outcomes arise from a sequence of k steps, each of them
with ni, i = 1, . . . k options (i.e., n1 options in step 1, n2 options in
step 2, and so on), then

the number of possible outcomes is n1 · n2 · . . . · nk.

Two key observations:

1. at each step i, we can have to pick exactly one of the ni options.
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2. the order does not matter.

A new burrito restaurant

Hence, in our burrito place example, we have 3 options
(tortilla type, meat type, bean type), leading to a total of
2 · 4 · 2 = 16 combinations (in the figure below, we show
the 8 possible outcomes for a wheat tortilla).

Tortilla

Flour Wheat

Meat

Chicken

Beans

Refried Black

Pork

Beans

Refried Black

Steak

Beans

Refried Black

No meat

Beans

Refried Black

Greek license plates

In Greece, a vehicle is required to have a license plate with
3 letters (from the Greek alphabet!) and 4 numbers (integer
numbers between 0 and 9). How many plates can there be,
seeing as the Greek alphabet has 24 letters?

A vehicle will have a license plate in the form of XXX####,
where X is one of 24 alphabet letters, and X is one of 10 inte-
ger numbers (0 through 9). Hence, in total, we have:

#license plates = 24 · 24 · 24 · 10 · 10 · 10 · 10 = 138240000.
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Permutations

A permutation is an ordered sequence of elements selected from
some set. For example, consider the sample space S = {1, 2, 3}. All
permutations are:

• {1, 2, 3}

• {1, 3, 2}

• {2, 1, 3}

• {2, 3, 1}

• {3, 1, 2}

• {3, 2, 1}

The number of permutations for a sample space with n possible
outcomes is 15 15 n! is defined for any integer number

as n · (n− 1) · (n− 2) · 1. n! is read as
“n factorial”. By definition, we say that
0! = 1.

Pn = n!

A random draw

5 people have been named the winners of a competition.
There are 5 different books that will be given to them. How
many different outcomes (assignments of winners to books)
do we have?

There are P5 = 5! = 120 possible outcomes (assignments of
winners to books).

We can also opt to select only r < n from the available elements in
the set. For example, consider the set S = {1, 2, 3, 4}. The permuta-
tions of r = 2 elements from that set are:

• {1, 2}

• {1, 3}

• {1, 4}

• {2, 1}

• {2, 3}

• {2, 4}

• {3, 1}

• {3, 2}

• {3, 4}

• {4, 1}

• {4, 2}

• {4, 3}

The number of permutations of r outcomes from a total of n out-
comes is:

Pn,r = n · (n− 1) · . . . · (n− r) =
n!

(n− r)!

A random draw (cont’d)

A total of 100 people are participating in a draw. 5 of the par-
ticipants will be named winners and get one of 5 different
books. How many different outcomes (assignments of winners
to books) do we have now?
There are P100,5 = 100!

(95)! = 9034502400 possible outcomes (as-
signments of winners to books).
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Another type of permutation arises when some of the outcomes
are the same (for example, two entries in a competition belonging
to the same person). In that case, there are fewer distinguishable
permutations. Formally, assume that:

• we have k different types of outcomes;

• n1 outcomes of type 1, n2 outcomes of type 2, . . . , nk ourcomes of
type k;

• such that n1 + n2 + . . . + nk = n.

How many different permutations can we obtain? As an example,
assume we are given the following 5 letters in Scrabble: 2× E, 2× S,
1× T. Some of the possible possible 5-letter “words” we can create
are:

• EESST

• EESTS

• EETSS

• ETESS

• TEESS

• SEEST

• SEETS

• SETES

• STEES

• TSEES

• ESEST

• . . .

Why is this setup different than the previous permutations we
discussed?

If we have k types of elements with ni objects of type i (i = 1, . . . , k)
such that ∑k

i=1 ni = n, then the number of distinguishable permuta-
tions is:

n!
n1! · n2! · . . . nk!

.

A game of Scrabble

How many different 7-letter words (maybe nonsensi-
cal) can we create in a game of Scrabble, where we have
2× A, 1× B, 2× S, 1× T, 1× X?
There are 5 different letters with n1 = 2, n2 = 1, n3 = 2, n4 =

1, n5 = 1. Hence, the total number of distinguishable, 7-letter
words we can create is:

7!
2! · 1! · 2! · 1! · 1!

= 1260 words.

Combinations

In all of our discussion so far, order matters. Often, though, we do not
care about it. For example consider the cases of:
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• creating a group of 4 people for a class project.

• checking the numbers on ten dies.

• picking the winning numbers in a lottery.

We define a combination as an unordered subset of r < n out-
comes selected from a sample spance with n outcomes. The number
of all possible combinations is calculated by 16: 16 (n

r) is also read as “n choose r”.

Cn,r =

(
n
r

)
=

n!
r! · (n− r)!

Permutation or combination?

• Choosing 5 students out of 80 candidates to participate in a
group?

• Choosing 5 students out of 80 for 5 specific and different
positions in a group?

• Locating 10 different facilities in 10 cities in the USA?

• Locating 2 different headquarter facilities from 50 candidate
cities in the USA?

Distinguishing between permutations and combinations

You have to select between 10 students for 3 positions. You are
allowed pick the same student for all three positions, if you’d
like.

• How many possible outcomes are there if the 3 positions
are different?

We need to use the multiplication rule 10 · 10 · 10 = 1000
possible outcomes.

• What if you are not allowed to select the same student more
than once? Assume again the 3 positions are different.

We need to use a permutation (10 students for 3 different
positions): P10,3 = 720 potential outcomes.

• What if all positions are actually for the same type of work?

We now have a combination (10 students for 3 positions):
C10,3 = 120 outcomes.
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From counting to calculating probability

As mentioned in the Motivation section, probability is a real number
between 0 and 1 that quantifies how likely an outcome (event) is.
Adopting the frequentist view of probabilities 17 we could possibly 17 The frequentist view states that the

probability of an outcome is the relative
frequency with which that outcome
appears over all possible outcomes (see
the Motivation section).

count the number of outcomes that are favorable and divide by the
total number of possible outcomes and thus estimate probability.

Quality control

A package is set to leave a factory and be sent to a retailer.
The package contains 100 items. We already know that exactly
3 of the 100 items are defective. The quality control team over
at the retailer works as follows: they select a sample of 6 items
from the 100, and check them. If there are 0 defective items
in the selected sample of 6, they accept the package and sell
its contents; otherwise, they send the package back. What is
the probability that the quality control rejects the package and
sends it back?

To answer this question, we decompose the problem into its com-
ponents. We need to know:

1. how many ways are there to select 6 items from the 100?

2. how many ways are there to have 1, 2, or 3 defective items in the 6

selected?

Let us begin by addressing the first question.

Quality control: How many ways are there to select 6 items
from the 100 in the package?

Step 1: How many ways are there to select 6 items from the
100 in the package? This is a combination and we get:

C100,6 =

(
100

6

)
=

100!
6! · 94!

= 1192052400 ways.

For the second question, we need to think slightly differently. Let
x be the number of defective items and 6 − x the number of non-
defective items in the sample of 6. Then:
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Quality control: How many ways are there to have 1, 2, or 3

items in the sample of 6 selected?

Step 2: How many ways are there to have 1, 2, or 3 defective
items from the 3 available in the selected sample of 6? This is
another combination, albeit requiring more calculations.

• Step 2a: How to select x = 1 defective items in the sample?

We would need to pick 1 out of the 3 defective and 5 out of
the 97 non-defective!

C3,1 =

(
3
1

)
= 3.

C97,5 =

(
97
5

)
= 64446024.

We should now use the multiplication rule between the
two, as we have to pick one option from the 3 possible
options from the first selection and one option from the
64446024 possible ones in the second selection, for a total of

3 · 64446024 = 193338072 ways.

• Step 2b: How to select x = 2 defective items in the sample?

Similarly:

C3,2 =

(
3
2

)
= 3.

C97,4 =

(
97
4

)
= 3464840.

The total is 10394520 ways.

• Step 2c: How to select x = 3 defective items in the sample?

Similarly:

C3,3 =

(
3
3

)
= 1.

C97,3 =

(
97
3

)
= 147440.

The total is 147440 ways.

To finish this example, we need to divide the number of desired
outcomes (obtained in Step 2) to the total number of outcomes (ob-
tained in Step 1). Note that we may add the three numbers from Step
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2 to calculate the total number of desired outcomes 18. 18 We observe that the three events
(selecting x = 1, x = 2, or x = 3
defective in the sample) are mutually
exclusive and hence the cardinality of
the union of the three events is equal
to the summation of the individual
cardinalities

Quality control: What is the probability?

Step 3: Let E = fail inspection. Then:

P(E) =
193338072 + 10394520 + 147440

1192052400
=

203880032
1192052400

= 0.171.

You pick 3 cards at random from a deck with 52 cards. What
is the probability that all 3 are face cards? What is the proba-
bility that 2 are face cards?



ie 300 20

3. Basic probability theory

Learning objectives

After this lecture, we will be able to:

• Recall and explain the basic properties that probability has.

• Calculate the probability of an event.

• Apply set operations in probability calculations.

• Define and provide examples of conditional probabilities.

• Apply the conditional probability formula.

• Recognize independence.

Motivation: Will I miss my flight?

Flying from Urbana-Champaign almost always requires a layover
in another airport. For example, flying to New York City usually is
done through Chicago with two legs: Urbana-Champaign to Chicago,
and Chicago to New York City. My layover is only 45 minutes in
Chicago, so I am naturally worried about making my connection. I
would feel much better if I knew whether my first flight leaves on
time or not. What is the probability that I make my second flight
given that my first flight is delayed by 15 minutes or more?

Motivation: Data collection

A company has undertaken the large effort of contact tracing and
testing for COVID-19 in the Urbana-Champaign area. It is expected
that from the people that leave in the area, 1% has been in close con-
tact with an already known case of COVID-19, 15% has been working
in close contact with multiple people as an essential worker, and 6%
has traveled to a location (in and outside the USA) with high risk of
contagion. A random person is selected for a test, but will only be
administered the test if they fall within one of the three categories
above. What is the probability that the person will get the test?

Probabilities

Definition

As a continuation from the motivation in the previous lecture, there
are two interpretations of probabilities:
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1. relative frequency of favorable outcomes versus all outcomes.

2. subjective “degree of belief”.

In both cases, we can use basic probability theory to calculate the
likelihood of an event happening or not. Once again, recall the defini-
tion of probability:

Definition 2 (Probability) With every event, we associate a real num-
ber called probability to represent the likelihood of that event happening.
Probabilities satisfy three main rules 19: 19 Also known as the Kolmogorov

axioms of probability.

1. P(E) ≥ 0, for any event E.

2. If an event E comprises the whole sample space (in which case, we write
that E = S), then P(E) = 1.

3. If E1, E2, . . . , Em are m mutually exclusive events, then

P (E1 ∪ E2 ∪ . . . ∪ Em) = P (E1) + P (E2) + . . . + P (Em) ,

or even more concisely:

P

(
m⋃

i=1

Ei

)
=

m

∑
i=1

P(Ei).

The first two axioms imply that probability is a real number in
[0, 1] 20, where 0 is an impossible event (one that can never happen) 20 We sometimes present probability

as a percentage (%): for example, a
probability of 0.4 can be also written as
a probability of 40%.

and 1 signals a certain event (one that will always happen) 21.

21 Consider a sample space S that
consists of three events: A, B, C. Then
the event that neither A nor B nor C
happen is impossible; the event that A or
B or C happens is certain.

Probabilities of mutually exclusive events

Assume that two events E1, E2 are mutually exclusive: for
example, let E1 be the event that you get an A in IE 300, and
E2 the probability that you get an A−. Your personal belief is
that you have a 30% “chance” at an A and a 20% “chance” at
an A−. Then, the probability that you get at least an A− in the
class is

P(“at least an A− in IE 300") = P(E1) + P(E2) = 50%.

From the three laws of probability, we also deduce that:

• P(E) = 1− P(E).

• P(∅) = 0.

• If E1 ⊆ E2, then P(E1) ≤ P(E2).
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Recall that we say that one event E1 is contained in another event
E2 and write that E1 ⊆ E2 if all outcomes that satisfy E1 are included
in E2. It should come as no surprise that when E1 ⊆ E2, we have that
P(E1) ≤ P(E2). This was a realization we have made since Lecture 1,
no? Recall the weather events: “sunny” implies “no rain”, which in
turn implies that “sunny” has a smaller probability than “no rain”.

When E1 ⊆ E2

A pizza store advertises delivery in 30 minutes or less. As-
sume that the probability of an order being delivered in 30

minutes or less is 0.9. Then:

• the probability of an order being delivered in 15 minutes or
less is at most 0.9.

• the probability of an order being delivered in 1 hour or less
is at least 0.9.

An email is categorized as one of the following 2 (mutually
exclusive) categories: spam or not-spam. Emails that are not-
spam are also categorized as one of 3 (mutually exclusive
again) categories: urgent, normal priority, and advertisements.
Answer the following questions.

• If the probability of a message being spam is 0.45, then the
probability of a message being not-spam is 0.55. True or
False?

• What is the probability that an urgent email is spam?

• An email is urgent with probability 0.1 and an email is of
normal priority with probability 0.2. Which of the following
cases is true?

1. P(not-spam) < 0.3.

2. P(not-spam) = 0.3.

3. P(not-spam) ≥ 0.3.

Unions and intersections of events

For any two events E1, E2, define E = E1 ∪ E2. We then have that
E1 ⊆ E and E2 ⊆ E, as E includes both all outcomes in E1 and all
outcomes in E2. This leads to:

P(E1) ≤ P(E), P(E2) ≤ P(E)
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and

P(E) ≤ P(E1) + P(E2). 22 22 Recall that we already saw when the
equality holds.

We can use a similar deduction for two events E1, E2 and E =

E1 ∩ E2. We have that E ⊆ E1 and E ⊆ E2, and get

P(E) ≤ P(E1), P(E) ≤ P(E2).

But how can we calculate P(E1 ∪ E2) exactly in the general 23 case? 23 Recall again that if E1 and E2 are
mutually exclusive, then P(E1 ∪ E2) =
P(E1) + P(E2) by the third Kolmogorov
axiom.

Let us turn back to sets and cardinalities.

Deriving that P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2)

We have already seen how E1 ∪ E2 can be written as the union
of three mutually exclusive events: E1 \ E2, E1 ∩ E2, and E2 \ E1.
From the third Kolmogorov axiom, we have that:

P(E1 ∪ E2) = P(E1 \ E2) + P(E1 ∩ E2) + P(E2 \ E1). (1)

Now, we note that E1 (and E2, respectively) can also be
written as the union of two mutually exclusive events:
E1 = (E1 \ E2) ∪ (E1 ∩ E2) (and E2 = (E2 \ E1) ∪ (E1 ∩ E2),
respectively). This gives that

P(E1) = P(E1 \ E2) + P(E1 ∩ E2) =⇒
P(E1 \ E2) = P(E1)− P(E1 ∩ E2). (2)

Combining (1) and (2) leads to:

P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2).
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Deriving that P(E1 ∪ E2) = P(E1) + P(E2) − P(E1 ∩ E2) for
equally probable events

Let us assume that we S consists of a number of equally prob-
able events. Then, we can provide another, more intuitive,
reasoning behind the P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2)

formula.

Recall that for any two sets E1, E2 ⊆ S, we have shown that

|E1 ∪ E2| = |E1|+ |E2| − |E1 ∩ E2|. (3)

Now recall that probability can be viewed as the fraction of fa-
vorable outcomes to all possible outcomes (equal to |S| here).
Dividing both sides of (3) by |S|, we get:

|E1 ∪ E2|
|S| =

|E1|
|S| +

|E2|
|S| −

|E1 ∩ E2|
|S| =⇒

P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2).

Practice with P(E1 ∪ E2) = P(E1) + P(E2)− P(E1 ∩ E2)

Two flights are delayed individually with probabilities 0.25
and 0.15, respectively. However, they are also affecting each
other, so they may both be delayed at the same time with
probability 0.1. What is the probability that at least one of
the flights is delayed on a given day?

Let E1 be the event that flight 1 is delayed and E2 the event
that flight 2 is delayed. Hence, “at least one flight being de-
layed” can be expressed as E1 ∪ E2. Combining:

P(E1∪E2) = P(E1)+ P(E2)− P(E1∩E2) = 0.25+ 0.15− 0.1 = 0.3.
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Recall the grades from 3 different professors
for the same class shown in a previous lecture.

Letter Grade Professor 1 Professor 2 Professor 3 Total
A 108 20 30 158

B 44 49 46 139

C 11 15 15 41

D 0 1 8 9

Total 163 85 99 347

Assuming you call on one student out of the total 347 stu-
dents, what is the probability:

1. E1: you pick a student from Professor 1’s class?

P(E1) = 163/347 = 0.4697.

2. E2: you pick a student who received an A in the class?

P(E2) = 158/347 = 0.4553.

3. E1 ∩ E2: you pick a student who was both in Professor 1’s
class and received an A in the class?

P(E1 ∩ E2) = 108/347 = 0.3112.

How about the probability that you pick either a student from
Professor 1’s class or a student who received an A in the class?

Recall that there is a:

• 1% probability for a person to have been in close contact
with a known COVID-19 case;

• 15% probability for a person to work as an essential worker;

• 6% probability that a person has traveled to a location with
high contagion risk.

However, when estimating the probability that a person qual-
ifies for the test, we have found that only 17% of the popu-
lation does that. Based on your knowledge so far, does that
make sense? How could that happen?

This last question should get us thinking about union of more than
2 events. For the next part see also the Worksheet for Lecture 3.
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Deriving the probability of the union of more than 2 events

This will be filled after the actual lecture.
Assume that in the following picture, S is the whole rectangle
and A, B, and C are some events.

E1 E2

E3

A B

C

E7

E4

E5 E6

Consider the numbers in each (mutually exclusive) part of the
Venn diagram.

E1: (A \ B) ∩ (A \ C)

E2: (B \ A) ∩ (B \ C)

E3: (C \ A) ∩ (C \ B)

E4: (A ∩ B) \ C

E5: (A ∩ C) \ B

E6: (B ∩ C) \ A

E7: A ∩ B ∩ C

Using this numbering, we can deduce that:

P(A ∪ B ∪ C) = P(E1) + P(E2) + P(E3) + P(E4) + P(E5) + P(E6) + P(E7).
(4)

Let us focus on event A:

E1

A B

C

E7

E4

E5

1. First, we observe that P(E7) = P(A ∩ B ∩ C).

2. Second, P(E1) = P(A)− P(E4)− P(E5)− P(E7).

3. And: P(E4) = P(A∩ B)− P(E7), P(E5) = P(A∩C)− P(E7).
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Deriving the probability of the union of more than 2 events
(cont’d)

Similarly, we obtain (after focusing and doing the same opera-
tions in B and C) for event B:

4. P(7) = P(A ∩ B ∩ C).

5. P(2) = P(B)− P(4)− P(6)− P(7).

6. P(4) = P(A ∩ B)− P(7) and P(6) = P(B ∩ C)− P(7).

And for event C:

7. P(7) = P(A ∩ B ∩ C).

8. P(3) = P(C)− P(5)− P(6)− P(7).

9. P(5) = P(A ∩ C)− P(7) and P(6) = P(B ∩ C)− P(7).

Replacing those in (4), leads to:

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)−
− P(A ∩ B)− P(A ∩ C)− P(B ∩ C)+

+ P(A ∩ B ∩ C)

In general, for m events E1, E2, . . . , Em, we have:

1. Add the probabilities of the individual events.

2. Subtract the probabilities of the intersections of any two events.

3. Add the probabilities of the intersections of any three events.

4. Continue subtracting the probabilities of the intersections of any
4, 6, . . . events and adding the probabilities of the intersections of
any 5, 7, . . ., events.

Conditional probabilities

Motivation

It is common to want to recalculate our chances as more information
become available or under certain conditions. For example, the prob-
ability that I miss the second leg of my flights is immediately affected
by any delays I might experience the first leg of my flight. In such
cases, we turn to conditional probability.
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Definitions

Definition 3 (Conditional probability) Conditional probability is de-
fined as the probability that an event E1 happens given that event E2 has
already happened: this is written as P(E1|E2)

24. 24 This is read as “the probability of E1
given E2” or “the probability of E1 such
that E2 has happened”.Let us think what we might need to calculate such a probability.

Assume that events E1 and E2 (not necessarily mutually exclusive)
are set to happen. We have already calculated that:

P(E1) = 0.5.a) P(E2) = 0.25.b) P(E1 ∩ E2) = 0.2.c)

Based on the given probabilities, we can also deduce that P(E1 ∪
E2) = 0.5 + 0.25− 0.2 = 0.55, even though we do not need this result.

Changing our perception

The probability that E1 happens is 0.5 (50%). Does this per-
ception change if we are told that E2 has already happened?
Let us try to come up with a visual parallel to the provided
probabilities. Here, we have 20 dots, out of which 12 (60%) are
red and 5 (25%) are blue. 20% of them (4 in number) are both
red and blue for a “purplish” color. Note that the four purple
dots are both red and blue.

Had you known that E2 has already happened, this leaves you
with much fewer cases to consider!

Should our perception for the probability of E1 change then?

Definition 4 (Conditional probability formula) The conditional proba-
bility of one event E1 conditional to event E2 is calculated by25 25 Note that conditional probabilities are

only for P(E2) > 0.

P(E1|E2) =
P(E1 ∩ E2)

P(E2)
. (5)

What is P(E1|E2) in the previous example? How about
P(E2|E1)?
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Finally, note that for two mutually exclusive events E1, E2, the
definition of conditional probabilities certainly implies that

P(E2|E1) = 0 and P(E1|E2) = 0.

The multiplication rule for probabilities

A very straightforward rewriting of the conditional probability for-
mula gives us a very important result. Solving for the numerator of
the right hand side in (5) gives us that for any two events A, B:

P(A ∩ B) = P(A|B) · P(B). (6)

This will come quite in handy in the next lecture.

Independence

We typically say that two entities are independent if actions of one
are completely unaffected (and do not themselves affect) the actions
of the other. In probability theory, we say that two events are inde-
pendent events if knowledge that one has happened (or not) does
not affect our perception for the probability of the other.

In mathematical terms, we say the following.

Definition 5 (Independent events) Two events E1, E2 are independent if
we have that:

P(E2|E1) = P(E2) and P(E1|E2) = P(E1).

Equivalently, we may write that two events E1, E2 are independent if

P(E1 ∩ E2) = P(E1) · P(E2).

Think of two events from real life that are independent. Also
think of two events that are clearly dependent.

Mutual exclusivity and independence

Two events are mutually exclusive. Are they independent?

Most definitely not! Quite the opposite, to be frank. Two mu-
tually exclusive events A, B will have that P(A|B) = 0 and
P(B|A) = 0 or, equivalently, P(A ∩ B) = 0. On the other hand,
two independent events will have that P(A|B) = P(A) and
P(B|A) = P(B).
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4. Bayes’ theorem

Learning objectives

After this lecture, we will be able to:

• Recall and explain the law of total probability.

• Use the law of total probability to calculate probabilities.

• Formulate Bayes’ theorem.

• Describe Bayes’ theorem.

• Explain what Bayes’ theorem implies for probabilities.

• Apply Bayes’ theorem in calculating probabilities.

Motivation: The Mantoux test

The Mantoux (sometimes called the Mendel–Mantoux) test is a di-
agnostic tool for tuberculosis (TB). In the test, a dosage of tuberculin
units is injected: some time later, the reaction on the skin is mea-
sured and a positive or negative reaction is given. It is assumed that
about 0.05% of the children in the world have TB. The test is pretty
accurate, with 99% success rate – that is a person with TB receives a
positive result 99% of the time, and a person without TB receives a
negative result 99% of the time.

The Mantoux test is mandatory in most European countries
schools. A random kid did the test, which came up positive. Are
you 99% certain the kid has TB?

Motivation: Pilot season

Studios typically make decisions on shows based on a single episode
made early on, called a “pilot”. This pilot episode is viewed by a
carefully selected audience who then reports either favorable or unfa-
vorable reviews. A show is considered highly successful, moderately
successful, or unsuccessful depending on its performance while on
air.

Historically, 95% of highly successful shows received favorable
reviews, 50% of moderately successful shows received favorable
reviews, and 10% of unsuccessful shows received favorable reviews.

You are one of the producers of a new TV show, and are showing
the pilot episode to a major studio. The audience loved it and gave
generally favorable reviews. Will your show definitely be a huge
success?
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The law of total probability

Motivation

The Spring 2020 semester saw a rapid change of plans for most uni-
versity courses due to the pandemic. Students were left needing to
make a decision about selecting credit or no credit for their classes.
Let’s focus on one particular case.

Credit/no credit or graded?

A UIUC course requires students to end up with an average
of 70 or above to qualify for credit, whereas an average of 60

is enough to qualify for a passing grade. A student believes
they will end up with a score between 65 and 80 – so they
are definitely passing the class – but they are thinking of opt-
ing for the credit/no credit option. Unfortunately, the class
is missing two important grades: the final project and a final
(non-cumulative) exam.

We are commonly facing problems like this in every day life.
Decision-making under uncertainty revolves around us making de-
cisions where the outcomes are not guaranteed. In such cases, the
decision-maker weighs the different futures and aims to quantify the
probability of a favorable outcome. Let’s revisit the student from the
example.

Credit/no credit or graded?

The student has been quite enjoying the material of the final
exam and they are optimistic that they will score very highly.
They believe that they will end up with a score of 90/100 with
probability 50% or a score of 80/100 with probability 50%.
They are not as confident for the final project, where they be-
lieve they received either a 50/100, a 60/100, or a 70/100 (with
probability 30%, 60%, and 10%, respectively). So, say, they go
ahead and put all these eventualities in a table.

A table can be used to keep track of all of the events whose out-
comes are uncertain. In the case of the student, they would have to be
enumerate a total of 6 cases (why? 26), which are presented next. 26 Remember counting!
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Figure 1: Two events A and B. A is represented by the blue area, whereas B contains
all outcomes in the circle.

A A

B

Credit/no credit or graded?

Final project Final exam Final grade
Scenario 1 50 80 65

Scenario 2 50 90 68

Scenario 3 60 80 69

Scenario 4 60 90 72

Scenario 5 70 80 73

Scenario 6 70 90 76

If the student picks credit/no credit, what is the probability
they do not receive credit?

Derivation

Consider two events A and B, marked below as the blue area of the
rectangle and the circle in the middle, respectively. We also mark the
complement of A in the figure.

Say, we are interested in the probability of B happening. We can
present this as a function of A as follows:

From the second figure, we observe that B can be written as a
union of two mutually exclusive events as in

B = (B ∩ A) ∪
(

B ∩ A
)
=⇒

P(B) = P (B ∩ A) + P
(

B ∩ A
)

. (7)

Finally, we recall here that P(A ∩ B) = P(A) · P(B|A) 27, which we 27 The multiplication rule we saw
during our previous lecture.
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Figure 2: Marking the two (mutually exclusive) parts of B. It is true that B = (B ∩ A) ∪
(B ∩ A).

A A

B

B ∩ A B ∩ A

can replace in (7) to get:

P(B) = P(A) · P(B|A) + P(A) · P(B|A). (8)

This is the law of total probability for two events.

Two urns contain red and blue balls. The first urn contains 3

red and 3 blue balls, while the second urn contains 5 red and
2 blue balls. We pick one ball at random from the first urn and
(without seeing its color) place it in the second urn. What is
the probability we pick a blue ball from the second urn?

Use and interpretation

The law of totally probability can be generalized to more than 2

states. Assume we have m mutually exclusive and collectively ex-
haustive events. With the term collectively exhaustive we mean events
whose union is the whole sample space. Formally:

Definition 6 (Collectively exhaustive events) Let S be the sample
space, and let Ai, i = 1, . . . , m be some events. Then, events Ai are collec-
tively exhaustive if ∪m

i=1 Ai = S.

Definition 7 (Mutually exclusive and collectively exhaustive events)
Let S be the sample space, and let Ai, i = 1, . . . , m be some events. Then,
events Ai are mutually exclusive and collectively exhaustive if ∪m

i=1 Ai = S
and Ai ∩ Aj = ∅ for any two sets Ai, Aj, i 6= j.

An example of a series of mutually exclusive and collectively
exhaustive events is given in Figure 3, where S = A1 ∪ A2 ∪ A3 ∪ A4
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Figure 3: Four collectively exhaustive and mutually exclusive events. For example,
they could represent numbers of unique website visitors in a given day. A1 could then
be up to 1000 visitors, A2 could represent between 1001 and 3000 visitors, A3 between
3001 and 5000 visitors, and A4 5001 or more visitors.

A1 A2 A3 A4

and, as is shown, A1 ∩ A2 = A1 ∩ A3 = A1 ∩ A4 = A2 ∩ A3 =

A2 ∩ A4 = A3 ∩ A4 = ∅.

Credit or no credit?

In the student example, the final project can be viewed as
three collectively exhaustive and mutually exclusive events,
since the student can only have received a score of 50, 60, or
70. On the other hand, the final exam score has two collec-
tively exhaustive and mutually exclusive events (a score of 80

or 90).

In the case of m > 2 mutually exclusive and collectively exhaustive
events, the law of total probability becomes:

P(B) = P(A1) · P(B|A1) + P(A2) · P(B|A2) + . . . + P(Am) · P(B|Am) =

=
m

∑
i=1

P(Ai) · P(B|Ai). (9)
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Credit or no credit?

Let’s go back to the table of scenarios the student had pre-
pared. Let us rewrite the eventualities:

• If they receive a 50 in the final project, then they definitely
do not get credit.

• If they receive a 60 in the final project, then they have a 50%
of getting credit.

• If they receive a 70 in the final project, then they definitely
get credit.

Let A1, A2, A3 be the events of getting a 50, 60, or 70 in the
final project and let C be the event of receiving credit in the
class. Then, in probability terms, we have:

P(C) = P(A1) · P(C|A1) + P(A2) · P(C|A2) + P(A3) · P(C|A3) =

= 0.3 · 0 + 0.6 · 0.5 + 0.1 · 1 =

= 0.4.

You have just booked a two-leg (two-flight) trip. The flights
are very close to one another and you are worried you will
miss your second flight in the case of a delay. If the first flight
is not delayed (which happens 60% of the time), you will be
certainly fine (won’t miss the flight); if the first flight is de-
layed up to 30 minutes (which happens 20% of the time), you
might miss the second flight with probability 50%; finally,
if the first flight is delayed by more than 30 minutes (which
happens 20% of the time), you will definitely miss the second
flight. What is the probability you miss the second flight?

Before we move on to the very important Bayes’ theorem deriva-
tion and use, we would like to summarize the different definitions for
events that we have seen so far:

1. Independent events: events that are unaffecting one another.
Mathematically, two (or more) events are independent if A|B is the
same as A:

P(A|B) = P(A).

2. Mutually exclusive: events that cannot both happen at the same
time. In English, one excludes the other. Mathematically, two (or
more) events are mutually exclusive if A|B is the same as ∅:

P(A|B) = 0.
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3. Collectively exhaustive: events whose collection describes any-
thing that can happen. In English, it has to be one of these events
that happens. Mathematically, two (or more) events are collectively
exhaustive if A ∪ B is the same as S:

P(A ∪ B) = 1.

1. Can two events be both mutually exclusive and collectively
exhaustive?

2. Can two events be both mutually exclusive and indepen-
dent?

3. Can two events be both collectively exhaustive and inde-
pendent?

Bayes’ theorem

States of the world

Consider the following paradigm. You wake up in the morning, and
unbeknownst to you the worlds is at a certain state. Let’s call this
state “good” or “bad”. In a “good” world, 90% of everyone you talk
to is happy and smiling and welcoming. In a “bad” world, only 5%
of the people you talk to are happy and smiling and welcoming.
Unfortunately, you have no idea which state the world is in today.
What could you do to find out?

The above paradigm, as far-fetched as it sounds, applies in multi-
ple aspects of our life. A student could have studied and can answer
a multiple choice question correctly, or could have gotten lucky and
could give the correct answer by chance. A diagnostic test could
come back positive, and this could mean that the patient is indeed
positive, or it could be a mistake (referred to as a false positive).
Even worse, a diagnostic test could come back negative, when the
patient is unfortunately positive (this is called a false negative). In all
the above cases, there is a “state of the world” that we are querying
through tests, whose outcomes we read.

States versus outcomes

We contrast states to outcomes as follows. We consider that a state
is fleeting and unknowable; hence, we perform a test and make an
observation of its outcome. However, the outcome of the test does not
necessarily reveal the state, as no test is perfect.
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The Mantoux test

In the Motivation section, we saw the Mantoux test. The states
of the world (unknowable for certain) are whether a kid has
TB or not. The test here is the Mantoux test. Its outcomes are
positive or negative.

We state two key observations:

• The test outcome is not equivalent to the state. A positive Man-
toux test does not always mean a person with TB. A low score in
a test does not always mean a student who did not study. A good
review does not necessarily mean you will like a movie.

• Looking for something rate, we will encounter many false posi-
tives. Think of what happens when searching in a vast desert for
an oasis. Most times, the oasis is a mirage.

A two-state example

We present a two-state example, adapted by Daniel Kahneman’s
“Thinking, Fast and Slow” book.

Farmer or librarian?

You sit next to someone in a flight and you start talking. The
person tells you that they are from the USA, they discuss
with you how much they enjoy reading books in their free
time, and that they enjoy learning about other cultures. They
then ask you: “We’ve been talking for a while. Guess what
my occupation is. Do you think I work as a librarian or as a
farmer?”

Our mind can create some connections based on what we know
and what we think we know. We know that there are more farmers
than librarians in the USA (roughly 3 million farmers compared to
300,000 librarians). We also think we know that librarians probably
enjoy books and learning about other cultures. We may jump to a
conclusion, but if we do the math, we will see that our mind can rely
too much on prior beliefs rather than context.

In summary: we formulate a hypothesis (for the state of the world)
and, then, given evidence (outcomes of a test) that we leverage, we
check to see if we are right or wrong.

Definitions

Let’s collect here some definitions and notations that will be useful
throughout the derivation of Bayes’ theorem:
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• Si, i = 1, . . . , n: n states of the world, which are mutually exclusive
and collectively exhaustive.

• Oj, j = 1, . . . , m: m outcomes of a test we administer trying to
understand the true state of the world.

We also need to define our beliefs for what the state of the world
is. These are called prior probabilities, as they reflect prior beliefs and
biases 28 (before we see the outcomes of the test): 28 Examples include the probability that

a random student has studied or not, or
the probability that a random person is
a librarian or a farmer.

• P(Si): prior probability of state Si.

Additionally, we define likelihood probabilities that represent the
probability we see a certain outcome of the test when the world is in
a certain state 29: 29 Examples include the probability that

a student does well in an exam given
that they have studied or that a person
works as a librarian given that they
enjoy reading books

• P(Oj|Si): likelihood probability of seeing outcome Oj given that
we are in state Si.

Moreover, we have already established that P(Oj ∩ Si) is the proba-
bility that we both experience outcome Oj and we are in state Si. This
is called a joint probability:

• P(Oj ∩ Si): joint probability of both seeing outcome Oj and we are
in state Si.

Finally, we may calculate the probability that a random test returns
a certain outcome Oj. This is referred to as a marginal probability 30: 30 An example would be the probability

of an “A” in an exam, or the probability
of a positive Mantoux test.• P(Oj): marginal probability of seeing outcome Oj.

Don’t lose sight of what we are searching for! This would be
P(Si|Oj): the posterior probability of being in state Si given that we
observed outcome Oj in the test.

We may now proceed to the derivation of Bayes’ theorem.

Derivation and use

We break down the derivation in steps.
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Derivation

Step 1: conditional probabilities. What can you say about
P(Si|Oj)?

P(Si|Oj) =
P(Si ∩Oj)

P(Oj)
. (10)

Step 2: joint probability. Which other conditional probability
employs P(Si ∩Oj)?

P(Oj|Si) =
P(Si ∩Oj)

P(Si)
=⇒ P(Si ∩Oj) = P(Si) · P(Oj|Si).

(11)

Replacing (11) into the numerator of the right hand side in
(10), we get:

P(Si|Oj) =
P(Si) · P(Oj|Si)

P(Oj)
. (12)

Step 3: marginal probability. What can we say for P(Oj)?
Let’s go back to the multiplication rule:

P(Oj) =
n

∑
i=1

P(Si) · P(Oj|Si) (13)

Replacing (13) in the denominator of the right hand side in
(12) gives us Bayes’ theorem:

P(Si|Oj) =
P(Si)·P(Oj |Si)

n
∑

i=1
P(Si)·P(Oj |Si)

.

Bayes’ theorem states that the posterior probability P(Si|Oj) de-
pends on our prior probabilities P(Si) and our joint probabilities
P(Oj|Si).

P(Si|Oj) =
P(Si)·P(Oj |Si)

n
∑

i=1
P(Si)·P(Oj |Si)

.

For a visual representation of Bayes’ theorem, check Figure 4.
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Figure 4: Consider 4 mutually exclusive and collectively exhaustive states S1, S2, S3, S4.
When outcome Oj happens, note how the probabilities of each state change. For

example, given Oj, we have P(S1|Oj) =
P(Oj∩S1)

P(Oj)
. Replacing P(Oj ∩ S1) by P(S1) ·

P(Oj|S1) and P(Oj) by P(S1) · P(Oj|S1) + P(S2) · P(Oj|S2) + P(S3) · P(Oj|S3) + P(S4) ·
P(Oj|S4) gives the result.

S1 S2 S3 S4

Oj

Oj ∩ S1 Oj ∩ S2 Oj ∩ S3 Oj ∩ S4

The Mantoux test

Going back to the Mantoux test, let’s fill in the information
we need to answer the question: “what is the probability a kid
has TB given that the test came back positive?”

• S1: kid has TB; S2: kid does not have TB.

• O1: positive Mantoux test; O2: negative Mantoux test.

• P(S1) = 0.0005; P(S2) = 0.9995.

• P(O1|S1) = 0.99; P(O1|S2) = 0.01; P(O2|S1) = 0.01;
P(O2|S2) = 0.99.

Using the Bayes’ theorem, we have:

P(S1|O1) =
P(S1) · P(O1|S1)

P(S1) · P(O1|S1) + P(S2) · P(O1|S2)
=

=
0.0005 · 0.99

0.0005 · 0.99 + 0.9995 · 0.01
= 0.0472.

We deduce that a positive Mantoux test implies a 4.72%
chance of actually having TB.

Answer the probability question in the pilot episode example
of the motivation.

Another visual representation of Bayes’ theorem

Assume that we get a representative population from two states:
Kansas and New York. Seeing as Kansas is about 9 times smaller
than New York, we pick 90 people from New York and 10 from
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Figure 5: A visual representation of the population picked. In red, we have the resi-
dents of the state of New York; in blue the residents of the state of Kansas.

Kansas, represented pictorially in Figure 5.
Statistically 20% of the population of New York works in an

agriculture-related job. The same percentage is 80% for Kansas. With-
out loss of generality, we show that with the following Figure where
farmers are shaded in green (light green for New York, dark green
for Kansas).

Finally, assume the person next to you is flying from Kansas to
New York (and has made it clear that they are either from Kansas or
New York) and works in a farm. While your original bias may be that
the person has to be in Kansas (look at the percentage of agriculture-
related jobs for the Kansas population!), Bayes’ theorem states that
the probability is only 8/26 = 0.31. Formally:

P(Kansas| f armer) =
P(Kansas ∩ f armer)

P( f armer)
=

0.1 · 0.8
0.1 · 0.8 + 0.9 · 0.2

= 0.31.
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Figure 6: A visual representation of 100 registered voters. The voters in shades of
green (darker green for red, lighter green for blue) are voters from Party A and Party B
that overwhelmingly agree with a given statement.

5-6. Discrete random variables

Learning objectives

After these lectures, we will be able to:

• Define discrete and continuous random variables.

• Differentiate between discrete and continuous random vari-
ables.

• Differentiate between when to use cumulative distribution
functions and probability mass functions.

• Give examples of at least four different discrete distribu-
tions.

• Recall when to and how to use:

– binomially distributed random variables.

– geometric distributed random variables.

– hypergeometric distributed random variables.

– Poisson distributed random variables.

Motivation: 2-engine vs. 4-engine aircraft

Suppose that for a flight to be completed successfully (which we
would really love) we need at least half of the engines to be opera-
tional at the end of the trip. In the case of a 2-engine aircraft, this
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means at least one; in a 4-engine aircraft, we’d need at least two.
We are ordering engines from a production company and we would
like to see whether buying two (for a 2-engine plane) or four (for a
4-engine plane). Which one would be safer?

Motivation: Big in Japan

Over the last 135 years, there have been 5 earthquakes of seismic
intensity over 7.0 in the Kanto region of Japan. However, especially
for those of us living in seismogenic zones 31, we probably grew up 31 An area with high seis-

mic/earthquake activity.hearing statements such as “the probability of an earthquake in X
within the next Y years is Z%”. Hey, this is what we do in this class!

We make the following assumptions for big earthquakes:

1. Big earthquakes are independent events – that is the fact that a big
earthquake happened does not increase or decrease the probability
of another big earthquake soon.

2. The probability of an earthquake occurring is the same throughout
the year 32. 32 This is a property also called homo-

geneity. More on that later.

What is the probability that there will be one big earthquake in the
Kanto region in the next year? What is the probability that there will
be one big earthquake in the Kanto region in the next decade?

Random variables

The world around us is a series of random processes, whose out-
comes affect the way we perceive things. Mathematically, we need to
somehow define these outcomes – using numerical representations.

Definition 8 (Random variables) With the term random variable 33 we 33 Also termed random quantities or
stochastic variables.mean a real-valued function defined over the sample space.

Definition 9 (Random variables) A random variable is a function that
associates a number with each element of the sample space.

Classification

In the next few lectures, we will separate our discussion between
discrete and continuous random variables.

• Discrete random variables take countable, discrete values. 34 34 For example, the side of a die, the
number of customers.

• Continuous random variables can take any real-value. 35 35 For example, the time until the next
bus arrives, the lifetime of a light bulb,
the pressure of a gas.
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Recall that we had made that distinction in the past for random ex-
periments and their sample spaces! 36 36 See Lecture 1.

Classify these random variables as discrete or continuous:

1. the time it takes for a biker to go from one side of campus
to the other.

2. the number of red lights the biker has to stop at when
going from one side of the campus to the other.

3. the distance a biker traverses to go from one side of cam-
pus to the other.

4. the number of times the biker changed speed gear while
going from one side of campus to the other.

Functions

When a random variable behaves a specific way, we say that it fol-
lows a probability distribution. A probability distribution is typi-
cally described by two distribution functions:

• The probability mass function for discrete random variables or
probability density function for continuous random variables.

• The cumulative distribution function.

We formally define those where needed for discrete and continuous
random variables.

The remainder for our lecture notes is devoted to discrete ran-
dom variables. See Lectures 7 and 8 for a discussion on continuous
random variables.

Discrete random variables

Let X be a discrete random variable.

Definition 10 We define the probability mass function (pmf) p(x) 37 of 37 Some textbooks may use f (x) for the
probability mass function. In our notes,
we will use p(x) for discrete random
variables and their probability mass
functions.

a discrete random variable X as the probability that it takes a specific value
x:

p(x) = P (X = x) .

One thing we need to be very careful with:

• Distinguish between X (upper case X) and x (lower case x)! X is
the random variables; x is a given value. 38 38 Example: we can write P(X = 7)

and read “what is the probability that
random variable X is equal to the value
7”?
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For example, the question “what is the probability that a store has
exactly 20 customers enter in the next hour?” can be addressed using
the probability mass function as follows. First, let X be a random
variable that represents the number of customers that enter the store
in the next hour. Then, express the probability as P(X = 20).

Definition 11 We define the cumulative distribution function (cdf)
F(x) of a discrete random variable as the probability that it takes up to a
value x, i.e.,

F(x) = P(X ≤ x) = ∑
y:y≤x

P (X = y) = ∑
y:y≤x

p(y).

For example, the question “what is the probability that a store has
up to 20 customers enter in the next hour?” can be addressed using
the cumulative distribution function as follows. First, let X be a
random variable that represents the number of customers that enter
the store in the next hour. Then, express the probability as

F(20) = P(X ≤ 20) =

= P(X = 0) + P(X = 1) + . . . + P(X = 20) =

= ∑
y≤20

P(X = y).

An immediate result from the definition of the cdf is that if we are
interested in the probability of seeing more than a certain value x we
may write:

P(X > x) = 1− P(X ≤ x) = 1− F(x).

Combining the two definitions (of P(X ≤ x) and P(X > x)) we get
that the probability of X taking values between a and b is 39: 39 This is easy to work out. It is left as

an exercise to the reader.

P(a < X ≤ b) = F(b)− F(a).

Defining these two functions helps us classify random variables
based on their properties, as we will spend the rest of the lectures
finding out.

2-engine vs. 4-engine

We saw that a plane performs a trip safely if at least half of its
engines are operational. Let X be the number of engines that
have failed during a trip. Then, we should be looking for:

• P(X ≤ 1): for the probability of a successful trip with a 2-
engine aircraft.

• P(X ≤ 2): for the probability of a successful trip with a 4-
engine aircraft.
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Earthquake probabilities

In a similar fashion, let X be the number of earthquakes in the
Kanto region in the next year and Y be the same number in
the next decade. Then, we should be looking for:

• P(X = 1): for the probability of one big earthquake in the
next year.

• P(Y = 1): for the probability of one big earthquake in the
next decade.

Should you use the pmf or the cdf?

• To avoid paying your friends in a game of Monopoly you
need to get a 6 or less when throwing two dies.

• An exam has 10 multiple choice questions. What is the
probability you answer all of them correctly?

• An exam has 10 multiple choice questions. What is the
probability you answer more than or equal to 8 questions
correctly?

• Two people are playing a game that is best out of three.
What is the probability the first player wins with a score of
2 to 1?

Assume a discrete random variable X with n outcomes xi, i =

1, . . . , n. Then, the probability mass function p(x) of random variable
X has to satisfy the following three rules:

1. p(xi) = P(X = xi), for every outcome xi, i = 1, . . . , n.

2. p(xi) ≥ 0.

3.
n
∑

i=1
p(xi) = 1
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Urns and balls

Two balls are drawn from an urn containing 5 red and 4 black
balls. Define a random variable X as the number of red balls
drawn. What is its probability mass function?

• X has three outcomes: 0, 1, 2.

• To select 0 red balls: p(0) = P(X = 0) = C4,2
C9,2

= 6
36

• To select 1 red ball: p(1) = P(X = 1) = C4,1·C5,1
C9,2

= 20
36

• Finally, for 2 red balls: p(2) = P(X = 2) = C5,2
C9,2

= 10
36

We may verify that these probabilities satisfy all three rules of
a valid probability mass function.

Urns and balls

Two balls are drawn from an urn containing 5 red and 4 black
balls. Define a random variable X as the number of red balls
drawn. What is its probability mass function?

• X has three outcomes: 0, 1, 2.

• To select 0 red balls: p(0) = P(X = 0) = C4,2
C9,2

= 6
36

• To select 1 red ball: p(1) = P(X = 1) = C4,1·C5,1
C9,2

= 20
36

• Finally, for 2 red balls: p(2) = P(X = 2) = C5,2
C9,2

= 10
36

We may verify that these probabilities satisfy all three rules of
a valid probability mass function.
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Calculating probabilities

A sample space is described by two mutually exclusive out-
comes A and B. We have observed that for some real number
x, the pmf is P(A) = 3 · x and P(B) = 10 · x2. What is x?
This type of question needs us to use the pmf rules. We need
to verify what x should be in order to satisfy P(A), P(B) ≥ 0
and P(A) + P(B) = 1. Replacing the pmf in the second equal-
ity we have:

P(A) + P(B) = 1 =⇒ 3 · x + 10 · x2 = 1

=⇒ 10 · x2 + 3 · x− 1 = 0 =⇒

=⇒ x =


-0.5

0.2

Replacing x = −0.5, we get that P(B) = 2.5, but P(A) =

−1.5 < 0. Replacing x = 0.2, we get that P(A) = 0.6 and
P(A) = 0.4, and is the correct answer.

The cumulative distribution function (cdf) of a discrete random
variable X needs to satisfy in turn two rules:

1. 0 ≤ F(x) ≤ 1.

2. If x ≤ y, then F(x) ≤ F(y).
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Urns and balls

Consider the previous sample space 0, 1, 2 with p(0) =
6

36 , p(1) = 20
36 , p(2) = 10

36 . Then:

F(x) =


0, x < 0
6

36 , 0 ≤ x < 1
26
36 , 1 ≤ x < 2
1, x ≥ 2.

−1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

x

F(
x)

Let the sample space be S = {1, 2, 3} with p(1) = 1
2 , p(2) =

1
3 , p(3) = 1

6 .

• Verify this is a valid pmf.

• Write the cdf F(x).

• Draw the cdf (like we showed in the previous example).

The binomial distribution

Before we get to the binomial distribution, we need to introduce
Bernoulli random variables. This first random variable we will intro-
duce is also (probably) the simplest!

Consider a single experiment that has only two probable out-
comes:

1. success which happens with probability p; and

2. failure which happens with probability q = 1− p.

Now, define a random variable X based on that single experiment:

X =

0, if the experiment failed;

1, if the experiment succeeded.
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The key is that we consider only one experiment 40. For the Bernoulli 40 Will the next coin toss be a heads
(success) or a tail (failure)? Will it rain
(success) or not (failure)? Will my
favorite NBA team win (success) its
next game or not (failure)? Will the
next patient be cured (success) or not
(failure)?

distribution, we have:

pmf:
P(X = 0) = q = 1− p
P(X = 1) = p

cdf: F(x) =


0, x < 0

1− p, x < 1

1, x ≥ 1

Urns and balls

An urn contains 40 black and 10 red balls. You pick at random
one ball from the urn. Let X be the number of black balls you
pick from the urn. What is the pmf of X?

X is a Bernoulli distributed random variable with pmf:

• P(X = 0) = 10
50 = 0.2.

• P(X = 1) = 40
50 = 0.8.

What if we consider more than one experiments? What if, say,
we picked 5 balls and wanted to get 3 black ones 41 This is where 41 Multiple experiments could mean

multiple coin tosses, or a control group
of 100 patients, or a best-of-five game
series!

binomially distributed random variables come in play! The setup is
simple:

• n independent experiments/trials.

• each experiments ends up in a success with probability p and a
failure with probability 1− p;

– that is, each trial is a Bernoulli random variable.

• Let X be the number of successes.

Then X is a binomial random variable. We may also write that
X = binom(n, p) as n (number of experiments) and p (probability
of success in each individual experiment) are the only necessary
parameters to fully define this random variable.

Coin tosses

The most common example to explain binomial random vari-
ables comes from coin tosses. Assume we possess a “fair” coin
with probability of Heads p = 0.5, and probability of Tails
q = 1 − p = 0.5? What is the probability that there will be
exactly 2 Heads in n = 3 tosses of the coin? This would be a
binomial distribution with n = 3, p = 0.5, q = 0.5, and x = 2
Heads.
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The formula for calculating the probability for binomially dis-
tributed random variables is: 42 42 The derivation of the formula is part

of Lecture 5’s worksheet.

p(x) = P (X = x) = (n
x) · px · (1− p)n−x , for x = 0, 1, . . . , n.

Recall that (n
x) =

n!
x!·(n−x)! as we had seen in a previous lecture. 43 43 See Lecture 2.

Coin tosses

We may now address the earlier question:

p(2) =
(

3
2

)
· 0.52 · (1− 0.5)3−2 =

3!
2! · 1!

· 0.25 · 0.5 = 0.375.

2-engine vs. 4-engine

In our motivational example, let p be the probability that an
engine fails during a trip, and hence q = 1− p is the probabil-
ity it does not fail. For the success of each plane, we have:

2-engine:

P(X ≤ 1) = P(X = 0) + P(X = 1) =

=

(
2
0

)
· p0 · (1− p)2 +

(
2
1

)
· p1 · (1− p)1 =

= 1− 2p + p2 + 2 · p− 2 · p2 = 1− p2

4-engine:

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2) =

=

(
4
0

)
· p0 · (1− p)4 +

(
4
1

)
· p1 · (1− p)3 +

(
4
2

)
· p2 · (1− p)2

= 1− 4 · p + 6 · p2 − 4 · p3 + p4 + 4 · p− 12 · p2 + 12 · p3 − 4 · p4

+ 6 · p2 − 12 · p3 + 6 · p4 = 1 + 3 · p4 − 4 · p3

Can we compare the two? To prefer a 2-engine plane we need
its probability of success to be higher, that is we need:

1− p2 ≥ 1 + 3 · p4 − 4 · p3 =⇒ −3 · p4 + 4 · p3 − p2 ≥ 0 =⇒
=⇒ −3 · p2 + 4 · p− 1 ≥ 0.

Let’s plot y = −3 · p2 + 4 · p− 1 and see what we get! Since for
y ≥ 0 we prefer a 2-engine aircraft, it suffices to see when y is
nonnegative in the plot!
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2-engine vs. 4-engine (cont’d)

0.2 0.4 0.6 0.8

−1

−0.5

0 p

We observe that for probability of engine failure p ≥ 1
3 , then a

2-engine plane is favored!

An urn contains 40 black and 10 red balls. You pick at ran-
dom one ball from the urn, check its color, and after checking
its color, you put it back in the urn. Let X be the number of
black balls you pick from the urn in n = 10 tries. What is the
probability that X = 6? What is the probability that X ≥ 9?

Food for thought: why was it important in the previous example
to put the ball back in the urn? What changes if I remove it from the
urn?

The geometric distribution

Let’s look at another extension of Bernoulli random variables. Earlier,
during our discussion for binomially distributed random variables,
we cared about the number of successes in a series of trials. How
about the first success though? When did it occur? Since we are
talking about a series of experiments, this first success can occur at
the first, second, third, and so on, try.

Coin tosses

Assume again we are in possession of a fair coin. What is the
probability the first Heads appears after three tries?

In general, we have that the probability that the first success is
seen after exactly x trials is: 44 44 The derivation of this formula is

also, albeit easier, part of Lecture 5’s
worksheet.P (X = x) = (1− p)x−1 · p.



ie 300 53

Learning basketball

A kid learning basketball is shooting free throws with a prob-
ability of scoring equal to 25%. What is the probability the kid
has to shoot four free throws until scoring the first one?

The number of free throws until the first one is scored X is a
geometric random variable with p = 0.25 and x = 4, hence we
have

P(X = 4) = (1− 0.25)3 · 0.25 = 0.753 · 0.25 = 0.1055.

Assume we have a fair coin. What is the probability..

• the first Heads appears in the 2nd toss?

• the first Heads appears in the 5th toss?

• the first Heads appears in the 10th toss?

The hypergeometric distribution

What if..

• we had N items;

• K ≤ N of them are successes (the remaining N − K are failures);

• we drew n of them;

• what is the probability we get k successes in the sample of n?

We have actually dealt with this problem before. Recall the exam-
ple from Lecture 2:

Quality control

A package is set to leave a factory and be sent to a retailer.
The package contains 100 items. We already know that exactly
3 of the 100 items are defective. The quality control team over
at the retailer works as follows: they select a sample of 6 items
from the 100, and check them. If there are 0 defective items
in the selected sample of 6, they accept the package and sell
its contents; otherwise, they send the package back. What is
the probability that the quality control rejects the package and
sends it back?
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The answer to this probability was 0.171 = 17.1%. Now, check how
this problem matches the setup of the hypergeometric distribution:
N = 100 total population size; K = 3 defective ones; n = 6 sample
size. If X is the number of defective items picked in the sample, then
the pmf for the hypergeometric is:

pmf: P(X = x) =
(K

x) · (
N−K
n−x )

(N
n )

An urn contains 40 black and 10 red balls. You pick at random
a sample of five balls from the urn. Let X be the number of
black balls in the sample. What is the probability that X = 3?

The big difference between the binomial and the hypergeometric
distribution is in the sampling with replacement 45 and the sam- 45 For example, taking 5 balls from the

urn one-by-one, looking at each one’s
color, and putting it back in, before
picking the next; or selecting 5 items
from a box one-by-one, checking it, and
placing it back in again before picking
the next.

pling without replacement 46 The main difference is that with re-

46 For example, taking 5 balls from
the urn at the same time and looking
at their colors together; or selecting
5 items from a box at the same time,
checking them and seeing if they are
defective.

placement, the probability of picking an item stays the same through-
out the experiment, no matter how many times it is repeated; without
replacement, the probability changes with every selection.

The Poisson distribution

We do the opposite of what we normally do: we will motivate the
Poisson distribution from a mathematical perspective instead of
through an example. Recall the binomial distribution and its proba-
bility mass function:

p(x) =
(

n
x

)
· px · (1− p)n−x .

Assume that we try way too many experiments (in essence let n →
∞) and define λ as the number of successes we get: that is, p = λ

n .
Let’s replace this in the probability mass function itself:

p(x) =
(

n
x

)
· px · (1− p)n−x

=
n!

x! · (n− x)!
·
(

λ

n

)x
·
(

1− λ

n

)n−x
.
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Let us now employ some of the cool limit properties that we know as
n→ ∞!

lim
n→∞

P(X = x) = lim
n→∞

(
n
x

)
· px · (1− p)n−x =

= lim
n→∞

n!
x! · (n− x)!

·
(

λ

n

)x
·
(

1− λ

n

)n−x
=

= lim
n→∞

λx

x!
· n!
(n− x)! · nx︸ ︷︷ ︸

1

·
(

1− λ

n

)n

︸ ︷︷ ︸
e−λ

·
(

1− λ

n

)−x

︸ ︷︷ ︸
1

=

= e−λ λx

x!

Definition 12 A discrete random variable X taking values 0, 1, 2, . . . is a
Poisson random variable with parameter (rate) λ > 0 if:

p(x) = P (X = x) = e−λ λx

x!
.

Poisson random variables have a wide, wide array of applications.
They have been used to model:

• the number of phone calls that a call center gets every day.

• the number of shark attacks in California every year.

• the number of home runs in a baseball series.

• the number of patients arriving in an emergency department every
night.

• the number of website requests per second.

• the number of earthquakes expected to hit a seismogenic area
every decade.

As can be seen from the examples, Poisson distributed random
variables are commonly used to model the number of events that
happen in a given interval. Poisson distributed random variables
need to satisfy three main conditions:

1. independence: an event happening should not affect the rate with
which more events happen.

2. homogeneity: the rate with which events happen is constant.

3. no two events can occur at exactly the same time. Instead there is a
small interval of time that separates two consecutive events.
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Earthquake probabilities

We will model our motivating example with predicting the
probability of an earthquake in the Kanto region of Japan us-
ing the Poisson distribution. We need to estimate λ, the rate of
events. From the data, we are told that there have been 5 big
earthquakes over the last 135 years, and hence:

λ =
5

135
= 0.037 earthquakes per year.

We are interested in:

• P(X = 1): for the probability of one big earthquake in the
next year.

P(X = 1) = e−0.037 · 0.0371

1!
= 0.0357 = 3.57%.

When interested in the probability of one big earthquake over
the next decade:

• P(Y = 1): for the probability of one big earthquake in the
next decade.

Here we need to adapt the rate to accommodate periods of 10

years. Hence, λ = 0.37 earthquakes per year. Finally:

P(Y = 1) = e−0.37 · 0.371

1!
= 0.2556 = 25.56%.

Finally, let’s address the probability that there is at least one big
earthquake in the next decade:

P(Y ≥ 1) = 1− P(Y = 0) = 1− e−0.37 · 0.370

0!
=

= 1− 0.6907 = 0.3093 = 30.93%.

Is it fair to assume that typos appearing in notes follow a
Poisson distribution? Why/Why not?

Assume typos appear in my notes following a Poisson distri-
bution with a rate of λ = 0.5/page. What is the probability
that no typos exist in the first page? What is the probability
that there exist more than 1 typo in the first 10 pages?

Plotting the Poisson distribution also proves an interesting en-
deavor. Let’s remember that all distributions we are discussing are
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discrete: hence, we will simply plot each point and then connect the
points with a line. For example, in Figure 7, we show the case for
λ = 1 and how we would connect the different data points.

Figure 7: The Poisson distribution for λ = 1.
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We do the same for λ = 2, 5, 10 in Figures 8, 9, 10.

Figure 8: The Poisson distribution for λ = 2.
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Figure 9: The Poisson distribution for λ = 5.
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Finally, take a look at Figure 11. See what happens when λ takes
on very big values...

The uniform distribution

Finally, we see the simplest discrete distribution, the uniform dis-
tribution. Think of a discrete random variable with n different out-
comes xi, i = 1, . . . , n. Now assume that:
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Figure 10: The Poisson distribution for λ = 10.
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Figure 11: The Poisson distribution for λ = 100.
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• all n outcomes are equally probable, then we have a uniform ran-
dom variable.

• each of the outcomes is equally probable, i.e., pi = P(X = xi) =
1
n .

In a special case, the discrete random variable take integer values
in [a, b]. In that case, the pmf is

pi =
1

b− a + 1
, for all i = a, a + 1, . . . , b.
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A diamond cutting facility

A demanding customer has shown up in a diamond cutting
facility and has asked for 2 custom-made fine-cut diamond cast-
ings. They are willing to buy 2 of those, as long as they are
of high quality.. Diamond cutting is an expensive process,
but you can make a lot of money out of it, and hence decide
to take on the order. You plan to buy enough material for
Q = 4 castings, just to be safe. Assuming that diamond cut-
ting is a purely random process and all outcomes (producing
x = 0, 1, . . . , Q high quality diamonds) are equally probable.
What is the probability you satisfy your customer?

We need x ≥ 2 high-quality fine-cut castings. The number of
high-quality castings produced follows a uniform distribution,
so:

P(X = x) =
1

Q + 1
=

1
5

.

Hence, to satisfy the customer we have a probability of:

P(X ≥ 2) = P(X = 2) + P(X = 3) + P(X = 4) =
3
5

.
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Summary

In Table 4, we provide all of our results from Lectures 5 and 6. One
could simply refer to these (and the keyword at the end of the page)
for all information about discrete probability distributions.

Table 1: A summary of all results from Lectures 5 and 6.

Name Parameters Values pmf

Bernoulli 0 < p < 1 {0, 1}
p(0) = 1− p

p(1) = p

Binomial 0 < p < 1, n ≥ 0 {0, 1, . . . , n} p(x) =
(

n
x

)
px · (1− p)n−x

Geometric 0 < p < 1 {1, 2, . . .} p(x) = (1− p)x−1 · p

Hypergeometric N, K, n ≥ 0 {0, 1, . . . , n} p(x) =
(K

x)(
N−K
n−x )

(N
n )

Poisson λ > 0 {0, 1, . . .} p(x) = e−λ λx

x!

Uniform - [a, b] p(x) =
1

b− a + 1

Some keywords that might help you narrow down your search.

Bernoulli: “one single experiment/trial”; “success/failure”; “p and
q = 1− p”.

Binomial: “multiple experiments/trials”; “success/failure”; “proba-
bilities stay the same from experiment to experiment”; “how many
successes in n tries?”; “with replacement”.

Geometric: “number of experiments/trials until first success”; “suc-
cess/failure”; “probabilities stay the same from experiment to
experiment”.

Hypergeometric: “sample”; “success/failure”; “without replace-
ment”; “how many successes in a sample of size n?”.

Poisson: “rate of events”; “number of events in an interval”.

Uniform: “equally probable”; “outcomes are integer in [a, b]”.
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7. Continuous random
variables: the uniform and the
exponential distribution

Learning objectives

After these lectures, we will be able to:

• Calculate probabilities of continuous random variables using
their probability distribution and cumulative distribution
functions.

• Give examples of uniform and exponentially distributed
random variables.

• Recall when to and how to use:

– uniformly distributed random variables.

– exponentially distributed random variables.

• Define the memorylessness property and apply it exponen-
tially distributed random variables.

• Use Poisson random variables and exponential random
variables and provide examples of their relationship.

Motivation: continuous vs. discrete random variables

Guess which number I am thinking between 0 and 10 is a tricky
proposition. If asked to do so in integer numbers (that is, 0 or 1 or
2...) then it is difficult to guess correctly, but not nearly impossible:
we’d get a probability of 1 over 11 or a little more than 9%. On the
other hand, when asked to do so with any number...

Motivation: Big in Japan

In an earlier example, we discussed the probability of seeing a certain
number of earthquakes in the Kanto region of Tokyo in Japan. What
if though we are interested in the timing of the next earthquake?
How would we go about modeling this using continuous random
variables?
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Continuous random variables

Let X be a continuous random variable. Recall here that a continu-
ous random variable is allowed to take any real value within some
interval, say in [a, b]. Hence, there is an infinite number of possible
outcomes associated with each continuous random variable!

Definition 13 We define the probability density function (pdf) f (x) 47 47 Contrast with the definition of a
probability mass function (pmf) p(x) of
a discrete random variable here...

of a continuous random variable X as the “relative likelihood” that X will be
equal to a specific value x. This definition is a little open-ended, so we will
address it more carefully shortly.

We again need to be careful with one item here:

• The actual probability that a continuous random variable X is
exactly equal to some value x is 0! 48 48 Surprised?

This last note probably changes the way we need to discuss contin-
uous probabilities. What if, instead of asking for the probability that
continuous random variable X is exactly equal to some value x, we
focus on the probability that continuous random variable X belongs to
some interval of values?

Continuous random variables

Instead of the probability that:

• the average temperature tomorrow is exactly 78.3 Fahren-
heit;

• the next bus passes in exactly 3 minutes and 25 seconds;

• the error of an ammeter (used to measure the current in a
circuit) is exactly 0.1 A;

we may ask for the probability that:

• the average temperature tomorrow is between 78 and 79

Fahrenheit;

• the next bus passes between 3 and 4 minutes from now;

• the error of an ammeter is within 0.1 A.

This gives rise to the need for defining and using the cumulative
distribution function. First, though, let us provide a different def-
inition for the probability density function of a continuous random
variable X.

Definition 14 A random variable is continuous if it can take uncountably
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many values such that there exists some function f (x) called a probability
density function defined over real values (−∞,+∞) such that:

• f (x) ≥ 0;

•
+∞∫
−∞

f (x)dx = 1;

• P (X ∈ B) =
∫
B

f (x)dx.

The last property essentially states that to find the probability that
a random variable X belongs to some interval B, then we need to
take the integral of the probability density function of X, f (x), over
the interval B.

Continuous random variables

What is the probability that random variable X with pdf f (x)
is between 0 and 10?

P (0 ≤ X ≤ 10) =
10∫

0

f (x)dx.

Due to the continuous nature of random variable X, and due
to the fact that P(X = x) = 0, for any value x, we also get that:

P (0 ≤ X ≤ 10) = P (0 < X < 10) = P (0 < X ≤ 10) = P (0 ≤ X < 10) .

Assume that continuous random variable X is distributed
with probability density function f (x) in [0, ∞). What is:

the probability that X is between 2 and 5?a)

the probability that X is below 5 or above 10?b)

the probability that X is exactly equal to 5?c)

Definition 15 We define the cumulative distribution function of a
continuous random variable as the probability that it takes up to a value a,
i.e.,

F(a) = P (−∞ < X ≤ a) =
a∫

−∞

f (x)dx.

By definition, F′(x) = f (x): the derivative of the cdf gives us the
pdf. Moreover, what we observed for discrete random variables is
also true here and P(a ≤ X ≤ b) = F(b)− F(a).
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Timing chemical reactions

The time until a chemical reaction is over is measured in mil-
liseconds (ms). The probability that the reaction is over by
time x is given by the following cdf:

F(x) =

0, x < 0

1− e−0.01x, x ≥ 0.

Answer the following questions.

1. What is the pdf?

2. What proportion of chemical reactions are performed in
less than or equal to 200 ms?

3. What proportion of chemical reactions take more than or
equal to 100 ms and less than or equal to 200 ms?

1. For the pdf, by definition we have that

f (x) = F′(x) =

0(
1− e−0.01x)′ =

0, x < 0

0.01 · e−0.01x, x ≥ 0

2. We need to calculate F(200):

P(x ≤ 200) = F(200) = 1− e−2 = 0.8647.

3. We now need P(100 ≤ x ≤ 200):

P(100 ≤ x ≤ 200) =
200∫

100

f (x)dx =

200∫
100

0.01 · e−0.01xdx =

= e−1 − e−2 = 0.2325.

To answer this last part, we could have also used the fact
that P(a ≤ X ≤ b) = F(b)− F(a):

P(100 ≤ x ≤ 200) = F(200)− F(100) = 0.2325.

We may also represent the cdf visually. If we plot f (x) (the pdf),
then the cdf is the area under the curve. For example, consider the
f (x) plotted in Figure 12. It could be a valid pdf as it satisfies f (x) ≥

0, and it also can be shown to satisfy
+∞∫
−∞

f (x)dx = 1, even though it

would be impossible to do so without knowing the exact function.
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That said, we may observe that it is equal to 0 for small enough and
large enough numbers, which indicates that the integral from minus
to plus infinity is equal to a finite number (i.e., the area under the
curve is a finite number).

Figure 12: The example probability density function we have come up with here.

c a b

Then, in Figures 13 and 14, we show what the cdf appears to be
visually.

Figure 13: How to visually represent the cumulative distribution function F(x) (here,
we specifically present F(c)).

c a b

Figure 14: How to visually represent the probability that a random variable is between
two values a and b.

c a b

Since we discussed the validity of a pdf, let’s see an example of
how we could use that.
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Valid pdf?

Assume a continuous random variable taking values between
0 and 10 with a pdf of f (x) = c · x. What is c?

First of all, c has to be nonnegative (c ≥ 0), otherwise f (x)
may become negative, which is not allowed. We then employ

the fact that
+∞∫
−∞

f (x)dx = 1:

+∞∫
−∞

f (x)dx = 1 =⇒
10∫

0

cxdx = 1 =⇒ c · x2

2

∣∣∣∣10

0
= 1 =⇒ c = 0.02.

Are the following valid pdfs?

• f (x) = 0.01, 0 ≤ x ≤ 100?

• f (x) = λ · e−λ·x, x ≥ 0?

• f (x) = λ · e−µ·x, x ≥ 0 if we are told that λ 6= µ?

The uniform distribution

We begin this time from the simplest continuous distribution, the
uniform distribution. In essence, it mimics its discrete counterpart,
where everything is equally likely. However, since we are discussing
continuous random variables, this implies that all values of f (x) are
equal, having equal relative likelihood. Its pdf and cdf are shown
next.

f (x) =

 1
β−α , if α ≤ x ≤ β

0, otherwise.

F(x) =
x∫

−∞

f (y)dy =


0, if x < α

x−α
β−α , if α ≤ x ≤ β

1, if x > β

Visually, the uniform distribution is presented in Figure 15.
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Figure 15: The uniform distribution probability density function.

α β

Totally random buses

Assume you are told that the next bus will arrive at any point
in the next 5 to 15 minutes. Hence, in this case, the time until
the next bus shows up is uniformly distributed. Then, what is
the probability the bus arrives before:

2’?a) 7’?b) 10’?c) 18’?d)

Note that here we have that α = 5, β = 15. Thus:

2’: x = 2 < α =⇒ F(2) = 0.a)

7’: x = 7 =⇒ F(7) = 7−5
15−5 = 0.2.b)

10’: x = 10 =⇒ F(10) = 10−5
15−5 = 0.5.c)

18’: x = 18 > β =⇒ F(18) = 1.d)

We visually present the probability for the bus to arrive in the next 10

minutes as an area under the curve in Figure 16.

Figure 16: The area under the curve for the probability of the bus arriving in 10’ from
the example. The area is marked in green. We can tell that it is half the total area
under the curve of the pdf, and hence corresponds to a probability of 50%.

α = 5 10 β = 15
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Figure 17: The exponential distribution probability density function visualized for
different values of λ, ranging from 0.5 to 4.

0 1 2 3 4

λ = 0.5
λ = 1
λ = 2
λ = 4

The exponential distribution

It is time to move to one of the most important and consequential
probability distributions. The exponential distribution takes its name
from the fact that it is based on the exponential function. This is
shown when considering its pdf and cdf 49: 49 In this lecture’s worksheet, you are

asked to derive F(x), so brush up on
your integration skills!

f (x) =

λ · e−λx, if x ≥ 0

0, if x < 0.

F(x) =

1− e−λx, if x ≥ 0

0, if x < 0.

We also present the two functions visually in Figures 21 and 18.
Formally, the exponential distribution is defined as in Definition 16.

Definition 16 (The exponential distribution) A continuous random
variable X defined over the interval of [0, ∞) is exponentially distributed if
it has probability density function given by

f (x) =

λ · e−λx, if x ≥ 0

0, if x < 0,

where λ > 0 is a parameter. We sometimes write that X ∼ Exp(λ) if it
follows the exponential distribution with rate λ. 50 50 Where have we seen rates before?

One of the many applications that the exponential distribution
sees in practice has to do with quantifying the probability of the
time until the next event. When events happen with some rate λ,
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Figure 18: The exponential distribution cumulative distribution function visualized for
different values of λ, ranging from 0.5 to 4.

0 2 4 6 8
0

0.2
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0.8
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λ = 0.5
λ = 1
λ = 2
λ = 4

Figure 19: Taken from The Simpsons. Figure 20: Taken from The Office.

we can quantify the risk or chance that the next event will happen
within some time interval using the exponential distribution. Let us
motivate this better with an example.

No accident in x days

How many days until the next accident? In many real-life
cases, we assume that the time to the next event follows an
exponential distribution. Assume that you work in a facility
that has typically a rate of λ = 2 major accidents per year.

What is the probability the next accident happens in the next
year? What is the probability that the next accident happens in
the next 1 month?

Before we answer the question, we need to address the déjà vue
feeling we may be experiencing. We have seen this family of ques-
tions before! When dealing with the Poisson random variables, we
were talking about rates and about the probability of having a certain
number of events within some time interval. The relationships do not
stop here: both distributions make use of the exponential function,
and both distributions rely on rates λ > 0. This brings us to the next



ie 300 70

subsection: how are Poisson random variables and exponentially
distributed random variables related?

The exponential distribution and the Poisson distribution

We have already motivated the fact that these two appear to be “sib-
ling” distributions. Let us go back to a question we addressed in a
previous worksheet. 51 We repeat this here for convenience. 51 Recall Lecture 6 Worksheet and,

specifically, Problem 10.
Lecture 6 worksheet: Problem 10 repeat

We saw in class the probability mass function for a Poisson
distributed random variable with rate λ. Assume that λ = 3
per year. What is the probability that there will be no events in
the next year? Can you say that this means that the next event
will happen more than a year from now? Let T be the time of
the next event: what is P(T > 1 year)?

Let X be the number of events during the next year. Then, we
have that:

P(T > 1 year) = P(X = 0) = e−λ · λ0/0! = e−3 = 0.05.

Note that we could also find the probability that the next
event does happen during the next year:

P(T ≤ 1 year) = 1− P(X = 0) = 1− e−λ ·λ0/0! = 1− e−3 = 0.95.

Let us put the previous result in perspective. The time to the next
event is exponentially distributed if the number of events is dis-
tributed as a Poisson random variable! The full relationship between
the exponential and the Poisson distributions is presented in tabular
form in Table 2.

Table 2: The relationship between an exponentially distributed and a Poisson dis-
tributed random variable.

Exponential distribution Poisson distribution
Rate λ Rate λ

Time to next event Number of events within some time
Continuous, [0, ∞) Discrete {0, 1, . . .}
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No accident in x days (cont’d)

How many days until the next accident? In many real-life
cases, we assume that the time to the next event follows an
exponential distribution. Assume that you work in a facility
that has typically a rate of λ = 2 major accidents per year.

What is the probability the next accident happens in the next
year? What is the probability that the next accident happens in
the next 1 month?

Let X be the time until the next accident. Recall that λ = 2 per
year, or equivalently λ = 2 per 12 months. We then have:

1. P(X ≤ 1 year) = F(1) = 1− e−2·1 = 0.8647.

2. P(X ≤ 1 month) = F(1) = 1− e−
2

12 ·1 = 0.1535.

Note how we used λ = 2/12 for the second question.

Historically, an emergency room after hours (10pm–6am) sees
48 patient requests every 8 hours. The time until the next
patient arrives is exponentially distributed with that rate.

What is the probability that the next patient arrives in
the next 10 minutes?

a)

What is the probability there are 5 patients during the
next hour (60 minutes)?

b)

Memorylessness

Definition 17 (Memoryless random variables) A random variable X is
said to be memoryless (without memory) if:

P(X > s + t|X > s) = P(X > t).

In English, the memorylessness property states that information
available to us for what has happened so far does not alter our per-
ception for the future. Let us see that with an example.
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Memorylessness and the exponential distribution

A car transmission fails in time that is exponentially dis-
tributed with a rate of 1 every 80,000 miles. What is the proba-
bility that the transmission does not fail within its first 40,000

miles?

We need P(T > 40,000 miles), when knowing that T is expo-
nentially distributed with λ = 1/80000. We have:

P(T > 40,000 miles) = 1− P(T ≤ 40,000 miles) = 1− F(40000) =

= e−
1

80000 ·40000 = e−0.5 = 0.6065 = 60.65%.

The next part is left as an exercise to the reader. 52 52 See also the Worksheet of Lecture 7!

Memorylessness and the exponential distribution

For the car from the previous example, assume we know that
its transmission has been working for 80,000 miles already.
What is the probability that the transmission does not fail in
the next 40,000 miles?

From our answer to the previous question, we get to the point we
wanted to make:

Exponentially distributed random variables are memoryless. 53 53 Again, the proof is something we will
do in the Worksheet of Lecture 7.

Memorylessness and the uniform distribution

Assume that the time (in minutes) until the next customer
shows up is uniformly distributed in [0, 60]. What is the prob-
ability the next customer shows up after the first minute?
What is the probability the next customer shows up between
the 59th and 60th minute, given that no customer has shown
up until the 58th minute?

Let T be the time to the next customer arrival. In the first part,
we are looking for P(T > 1):

P(T > 1) =
59
60

.

Now, note that this answer is significantly different than the
answer we would get by calculating P(T > 59|T > 58), which
is:

P(T > 59|T > 58) =
P(T > 59)
P(T > 58)

=
1/60
2/60

=
1
2

.
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From the example, we may deduce that the uniform distribution
is not memoryless. Memorylessness is a rare property (actually, the
only continuous distribution to possess the property is the exponen-
tial).

General exponential distribution

The exponential distribution we have discussed so far only requires a
single parameter: the rate λ > 0. In some cases, we may be interested
in a “shifted version” of the exponential distribution (as in Figure ??).

Figure 21: The general exponential distribution probability density function visualized
for different values of λ and µ.

0 2 4 6 8

λ = 0.5, γ = 0
λ = 1, γ = 2
λ = 2, γ = 4

We call the “shift” the location parameter and we represent it
with γ > 0 54. Hence, the general exponential distribution is a two- 54 Some textbooks employ µ instead of

γ. In this class, I will try to reserve µ
for something different.

parameter distribution requiring the presence of a rate λ > 0 and
a location parameter γ > 0, rendering the pdf and the cdf of the
general exponential distribution as follows:

f (x) =

λ · e−λ(x−γ), if x ≥ γ

0, if x < γ.

F(x) =

1− e−λ(x−γ), if x ≥ γ

0, if x < γ.
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Doctor FaceTime

A doctor sees patients in time that is exponentially distributed
with rate 1 patient every 40 minutes. However, every patient
will spend at least 10 minutes logged in the appointment
while they are answering survey questions. In essence, this
means that no patient will leave before these 10 minutes are
up. What is the probability the next patient is seen for:

more than 30 minutes?a)

more than 1 hour?b)

more than 2 hours?c)

Let T be the time the next patient will require: T is exponen-
tially distributed with rate λ = 1/40 minutes and γ = 10
minutes. Then, we have:

P(T > 30 minutes) = 1 − P(T ≤ 30 minutes) = 1 −
F(30) = e−

1
40 ·(30−10) = e−0.5 = 0.607.

a)

P(T > 1 hour) = 1 − F(60) = e−
1
40 ·(60−10) = e−5/4 =

0.287.
b)

P(T > 2 hours) = 1− F(120) = e−
1

40 ·(120−10) = e−11/4 =

0.064.
c)
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Summary

We have seen a lot of material in this lecture. To help place every-
thing together, we provide in Table 4 a summary of all results from
Lecture 7. You could again refer to these (and the keyword that fol-
low) for all information about the uniform and the exponential prob-
ability distributions.

Table 3: A summary of all results from Lecture 7.

Name Parameters Values pmf

Uniform − [a, b] f (x) =

{
1

β−α , if α ≤ x ≤ β

0, otherwise.

Exponential λ > 0 [0,+∞) f (x) =

{
λ · e−λx, if x ≥ 0

0, if x < 0.

General exponential λ, γ > 0 [γ,+∞) f (x) =

{
λ · e−λ(x−γ), if x ≥ γ

0, if x < γ.

Some keywords that might help you narrow down your search. For
convenience we also include the Poisson distribution, seeing as it is
related to the exponential distribution.

Uniform: “equally probable”; “ f (x) = c, where c is a constant”.

Exponential: “time to next event”; “rate of events”; “memoryless
distribution/memorylessness property”.

General exponential: “time to next event”; “rate of events”; “loca-
tion parameter”; “no event before a certain point”.

Poisson: “number of events in an interval”; “rate of events”.
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8. Continuous random
variables: the Gamma/Erlang
distribution and the normal
distribution

Learning objectives

After these lectures, we will be able to:

• Give examples of Gamma, Erlang, and normally distributed
random variables.

• Recall when to and how to use:

– Gamma and Erlang distributed random variables.

– normally distributed random variables.

• Recognize when to use the exponential, the Poisson, and the
Erlang distribution.

• Use the standard normal distribution table to calculate prob-
abilities of normally distributed random variables.

Motivation: Congratulations, you are our 100,000th customer!

Last time, we discussed about the probability of the next customer
arriving in the next hour, next day, next year. What about the proba-
bility of the 10th customer arriving at a certain time? Or, consider a
printer that starts to fail and needs maintenance after the 1000th job:
what is the probability these failures start happening a month from
now?

Motivation: Food poisoning and how to avoid it

A chef is using a new thermometer to tell whether certain foods have
been adequately cooked. For example, chicken has to be at an inter-
nal temperature of 165 Fahrenheit or more to be adequately cooked;
otherwise, we run the risk of salmonella. The restaurant wants to
take no chances! The chef, then, takes a look at the temperature read-
ing at the thermometer and sees 166. What is the probability that the
chicken is adequately cooked, if we assume that the thermometer is
right within a margin of error?
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The Gamma and the Erlang distribution

Assume again that you are given a rate λ with which some events
happen. So far, we have addressed two related questions:

1. What is the probability that the next event happens during some
time interval? This is addressed through defining and using an
exponentially distributed random variable (continuous).

2. What is the probability that we see a number of events during
some time interval? This is addressed through defining and using
a Poisson distributed random variable (discrete).

It is time to address a third question: what is the probability that
the k-th event happens during some time interval? Like the first
question, this is addressed using a continuous random variable; like
the second question, we need a number of events to happen first.

Definition 18 (The Gamma distribution) A continuous random vari-
able X defined over the interval of [0, ∞) is Gamma distributed if it can be
written it has probability density function given by

f (x) =

 λk ·xk−1·e−λx

Γ(k) , if x ≥ 0

0, if x < 0,

where λ > 0 and k > 0 are given parameters and Γ(k) is the Gamma
function. 55 We sometimes write that X ∼ Gamma(k, λ) if it follows the 55 In this class, we will only deal with

integer values of k, and hence Γ(k) =
(k− 1)!.

Gamma distribution with rate λ and shape parameter k.

When k is a positive integer number, the Gamma distribution
is referred to as the Erlang distribution. In essence, the definition
follows.

Definition 19 (The Erlang distribution) A continuous random variable
X defined over the interval of [0, ∞) is Erlang distributed if it can be written
as the summation of exponentially distributed random variables
X = ∑k

i=1 Xi, where Xi is an exponentially distributed random variable.
When X is Erlang distributed it has probability density function given by

f (x) =

 λk ·xk−1·e−λx

(k−1)! , if x ≥ 0

0, if x < 0,

where real λ > 0 and integer k > 0 are given parameters.

Due to the nature of the Γ function (and of (k− 1)!), it is typically
easier to integrate the pdf after we plug in the value for k that we are
interested in. For example, consider the problem from our motiva-
tion.
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Figure 22: The Erlang distribution probability density function visualized for different
values of λ and k.
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Congratulations, you are our 10th customer

A store, which is open for 8 hours every day, gives a gift card
to the (exactly) 10th customer of every day. The store has ob-
served that customers show up at a rate of 1 every 20 minutes
(exponentially distributed). What is the probability the 10th
customer of the day shows up in the second half of the day?

Let T be the time the k = 10-th customer arrives. T can then
be written as the summation of the arrival times of the first
plus the second plus the third, all the way to the 10-th cus-
tomer: since it is a summation of exponentially distributed
random variables, T is Erlang distributed with parameters λ

(the rate) and k = 10.
We are interested in P(T > 4 hours). For convenience, we
translate the rate to hours, getting that λ = 3 per hour:

P(T > 4 hours) =
8∫

4

f (x)dx =

8∫
4

λk · xk−1 · e−λx

Γ(k)
dx =

=

8∫
4

310 · x9 · e−3·x

9!
dx =

59049
362880

8∫
4

x9 · e−3·x =

=
59049

362880
· 1.487 = 0.242.
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Replacing parts

A machine requires a component to work. The component
is replaced every two times the machine is doing a job. The
machine works at a rate of 3 jobs per 8 hours. What is the
probability the component is not replaced in the first 8 hours?

Once again, we use λ = 3/8 per hour, and then define T as
the Erlang distributed random variable of the time the 2nd job
appears (k = 2, integer and hence Erlang). We then have:

P(T > 8 hours) =
∞∫

8

f (x)dx =

∞∫
8

λk · xk−1 · e−λx

Γ(k)
dx =

=

∞∫
8

( 3
8
)2 · x · e− 3

8 x

Γ(2)
dx =

9
64

∞∫
8

x · e−
3
8 x. (14)

Recall that we can integrate by parts to get:

∞∫
8

x · e−
3
8 x = −8

3

∞∫
8

x ·
(

e−
3
8 x
)′

= −8
3
·

 x · e−
3
8 x
∣∣∣∞
8
−

∞∫
8

e−
3
8 x

 =

= −8
3
·
(

8e−3 +
8
3
· e−3

)
=

256
9
· e−3 = 1.4162.

(15)

Plugging the result from (15) into (14), we get 0.19915.

The lifetime of a printer toner is exponentially distributed: it
needs to be replaced once every 9 months. What probability
distribution would you use for each of the following cases?

The number of toners you need to buy in the next 3

years.
a)

The time until the toner is replaced.b)

The time until you run out of toners, if you have bought
a package with 3 toners.

c)

The time until the toner is replaced, given that the toner
currently in use has not been replaced for 6 months
already.

d)
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Figure 23: An example of how the normal distribution probability density function
looks like.

The normal distribution

We have come to a big one. This is arguably the most well-studied,
used, and applied distribution among the ones we have studied so
far. It is defined through two parameters referred to as the mean (µ)
and the variance (σ). We then say that a normally distributed random
variable X is N (µ, σ2). 56 56 Note that we replace the standard

deviation σ, with its square σ2.
Definition 20 (Normal distribution) A random variable X is said to
follow a normal distribution with mean µ and standard deviation σ, if it has
a probability density function of:

f (x) =
1√

2π · σ
e
−(x−µ)2

2σ2 .

We then commonly write that X ∼ N
(
µ, σ2).

We present an example for how the normal distribution pdf looks
like in Figure 23. We observe that it is symmetric and bell-shaped.
From the definition of the normal distribution, we may also get the
cumulative distribution function as:

F(x) =
x∫

−∞

f (t)dt.

This is clearly an integral that we would rather not have to deal with!

Parameters

The two parameters that describe a normal distribution affect its lo-
cation (µ) and its spread (σ). Visually, we show this relationship in
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Figure 24: Some examples of how the normal distribution is affected by its mean and
standard deviation.

5 10 15 20 25 30

0.2

0.4 µ = 8, σ = 1
µ = 8, σ = 2

µ = 16, σ = 1

Figure 24. Note how the mean affects the location of the normal dis-
tribution, whereas the standard deviation affects how far it spreads.

The standard normal distribution

When µ = 0 and σ = 1, we call the resulting normal distribution, the
standard normal distribution and denote it as N (0, 1). Due to the
applicability of the normal distribution in many real-life instances,
the standard normal distribution has been extensively studied and
we have in our possession tables containing the values of the cumula-
tive density function. An example of such a table is provided to you
in the next page.

For convenience, we refer to the pdf and the cdf of the standard
normal distribution N (0, 1) as φ(z) and Φ(z), respectively. Note the
use of z rather than the typically used x!
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NORMAL CUMULATIVE DISTRIBUTION FUNCTION (Φ(z))

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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A normally distributed random variable X ∼ N
(
µ, σ2) can be

converted to the standard normal distribution N (0, 1) through one
small, simple transformation, called the z-transform:

If X is N (µ, σ2), then Z = X−µ
σ is N (0, 1).

This implies that for any normally distributed random variable
X, P(X = x) can be written as P(Z = x−µ

σ ), where Z is distributed
following the standard normal distribution!

Doing transformations

Let X be N (400, 400) (i.e., σ2 = 400 =⇒ σ = 20). What is:

P(X ≤ 400)?a) P(X ≤ 451)?b) P(X ≤ 375)?c)

x = 400 =⇒ z = 400−µ
σ = 0.a)

x = 451 =⇒ z = 51
20 = 2.55.b)

x = 375 =⇒ z = −25
20 = −1.25.c)

With z at hand, calculating a probability becomes merely a look-up
operation! Indeed, all you need to do is find the z value in the cdf
table. The rows reveal the two most important digits and the columns
the third most important digit. For example, finding z = 1.37, we’d
go to the 1.3 row and the 0.07 column.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
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Using the z-table

Let X be N (400, 400) (i.e., σ2 = 400 =⇒ σ = 20). What is:

P(X ≤ 400)?a) P(X ≤ 451)?b) P(X ≤ 375)?c)

We already have found that:

z = 0.a) z = 2.55.b) z = −1.25.c)

Now is the time to find these values in the table. For the first
one:

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

For the second one:

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

For the third one, we run into a problem. The table provided
does not give any negative values for z!

Recall of two facts:

1. The normal distribution is symmetric.

2. For any continuous random variable, the probability can be found
by looking at the area under the curve of the pdf.

Let us combine these two facts in an image. Consider the random
variable X ∼ N (400, 400) in Figure 25. As a reminder, we are inter-
ested in P(X ≤ 375).

Due to symmetry, the two shaded areas (in blue and red) have
to be equal, as they are symmetric from the mean (400). Hence, we
have that P(X ≤ 375) = P(X ≥ 425). That said, we do know that
P(X ≥ 425) = 1− P(X ≤ 425). Finally, recall that P(X ≤ 425) can be
found in the z-table, as it corresponds to a positive value! Hence, to
recap, when dealing with negative values of z, we can follow the next
steps:

1. Instead of z < 0, search for −z.

2. Find the value in the z-table, Φ(−z).

3. Then, Φ(z) = 1−Φ(−z).



ie 300 85

Figure 25: The pdf of the distribution of random variable X ∼ N (400, 400).

375 400 425

Negative values of z

Let X be N (400, 400) (i.e., σ2 = 400 =⇒ σ = 20). What is:

P(X ≤ 400)?a) P(X ≤ 451)?b) P(X ≤ 375)?c)

We have solved the first two:

P(X ≤ 400) =

0.
a) P(X ≤ 451) =

0.9946.
b) P(X ≤ 375)?c)

Finally, for P(X ≤ 375), with corresponding z = −1.25, we
find −z on the table.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

Then, we report that

P(X ≤ 375) = Φ(−1.25) = 1−Φ(1.25) = 0.1056.

Finally, like in all distributions, if we are interested in the probabil-
ity of a quantity being within a range of values (say, P(a ≤ X ≤ b)),
then we may calculate F(b) − F(a), or using the corresponding z-
values (za, zb), we may calculate that probability as P(a ≤ X ≤ b) =

F(b)− F(a) = Φ(zb)−Φ(za).
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A newsvendor is deciding how many newspapers to order for
the following day. The demand for newspapers follows a nor-
mal distribution with a mean of 100 and a standard deviation
of 10.

• What is the probability of selling all the newspapers they
order if they place an order for:

120 newspapers?a)

80 newspapers?b)

• How many newspapers should the newsvendor order if:

the newsvendor is risk-averse and would like at least
a 90% chance of selling all of them?

a)

the newsvendor is risk-seeking and would like at least
a 90% chance of satisfying all demand?

b)
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Summary

In Table 4, we provide all of the results from Lectures 7 and 8. We
are bundling them together (even though we already provided a
summary of results for Lecture 7 alone) so that we have everything
for continuous distributions in one place.

Table 4: A summary of all results from Lectures 7 and 8.

Name Parameters Values pdf

Uniform − [a, b] f (x) =

{
1

β−α , if α ≤ x ≤ β

0, otherwise.

Exponential λ > 0 [0,+∞) f (x) =

{
λ · e−λx, if x ≥ 0

0, if x < 0.

General exponential λ, γ > 0 [γ,+∞) f (x) =

{
λ · e−λ(x−γ), if x ≥ γ

0, if x < γ.

Gamma λ > 0, k > 0 [0,+∞) f (x) =

 λk ·xk−1·e−λx

Γ(k) , if x ≥ 0

0, if x < 0,

Erlang λ > 0, integer k > 0 [0,+∞) f (x) =

 λk ·xk−1·e−λx

(k−1)! , if x ≥ 0

0, if x < 0,

Normal µ, σ2 (−∞,+∞) f (x) = 1√
2π·σ e

−(x−µ)2

2σ2

Some keywords that might help you narrow down your search. For
convenience we also include the Poisson distribution, seeing as it is
related to the exponential distribution.

Uniform: “equally probable”; “ f (x) = c, where c is a constant”.

Exponential: “time to next event”; “rate of events”; “memoryless
distribution/memorylessness property”.

General exponential: “time to next event”; “rate of events”; “loca-
tion parameter”; “no event before a certain point”.

Poisson: “number of events in an interval”; “rate of events”.

Erlang: “time to k-th event”; “rate of events”.

Normal: “normally distributed”; “average/summation of multiple
identical random variables”; “central limit theorem”. 57 57 These keywords are provided here,

but are explained in Lecture 10.
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9. Expectations and variances

Learning objectives

After these lectures, we will be able to:

• Define and explain with examples what expectations and
variances are.

• Calculate the expectation and variance of discrete and con-
tinuous random variables.

• Calculate the expectation and variance of functions of dis-
crete and continuous random variables.

• Recall and use basic properties of expectations and vari-
ances.

Motivation: Printer lifetime

A printer has a working lifetime that is exponentially distributed
with rate λ = 1 broken printer every 3 years. In English, we typically
replace the printer every 3 years. Assume the company decides to
change the printer every 2 years (if it hasn’t broken down) or when
it breaks down (whichever happens first). What is the expected time
the company keeps a printer?

Expectation

When describing a random variable and its probability distribution,
we sometimes are interested in answering a simple question “what
should I expect?” Seeing as a random variable is inherently, well,
random, expectations are important and they reveal a “center” of the
probability distribution.

Definition 21 (Expectation) With the term expectation (sometimes we
use the term mean or expected value), we imply a measure of the center of
the probability distribution. Intuitively, we may think of the expected value
of a random variable X as an “average” of the values that X is allowed to
take weighted by their respective probabilities.

This definition is very open-ended, so we provide more specific
definitions for discrete and continuous random variables in the next
subsections.
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Discrete random variables

Definition 22 (Expectation of a discrete random variable) Let X
be a numerically-valued discrete random variable with sample space S and
probability mass function p(x). Then, the expected value of X is written as
E [X] and is calculated as:

E [X] = ∑
x∈S

x · p(x).

The expected value is commonly referred to as the mean and is also written
as µ.

An unfair die

Consider an “unfair” die with sample space S =

{1, 2, 3, 4, 5, 6} and p(1) = 1/3, p(2) = 1/6, p(3) = 1/6, p(4) =
1/6, p(5) = 1/12, p(6) = 1/12. What is the expected value?

• E [X] = 1 · 1
3 + 2 · 1

6 + 3 · 1
6 + 4 · 1

6 + 5 · 1
12 + 6 · 1

12 = 33
12 = 2.75.

Note how the value we expect can never actually happen, as
the die can only take the values of 1, 2, 3, 4, 5, or 6!

What about for a fair die, where each side (1, 2, 3, 4, 5, or 6)
are equally probable? What is the expectation for this die?

Continuous random variables

Definition 23 (Expectation of a continuous random variable) Let X
be a numerically-valued real random variable defined over (−∞,+∞) and
probability density function f (x). Then, the expected value of X is written
as E [X] and is calculated as:

E [X] =

+∞∫
−∞

x · f (x)dx.

The expected value is commonly referred to as the mean and is also written
as µ.
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A rating system

A company is rating their employees with a system that as-
signs a score between 1 and 5. We assume the score is contin-
uous (that is, a score of 4, 4.2, and 4.31478 are all valid) and
the probability with which score x appears is given by pdf
f (x) = 3

124 · x2, for 1 ≤ x ≤ 5. What is the expected rating
score of a random employee?

• E [X] =
5∫

1
x · f (x)dx = 3

124

5∫
1

x3dx = 117
31 = 3.77.

Good employees are the ones that receive a rating score of 4

or above. Their scores are distributed with a slightly different
distribution: they follow pdf f (x) = 2

9 · x for 4 ≤ x ≤ 5. What
is the expected rating score of a good employee?

Properties of the expectation

The expectation satisfies the following properties

1. Let α be a real number and X be a random variable. Then:

E [α · X] = α · E [X] .

2. Let X, Y be two random variables. Then:

E [X + Y] = E [X] + E [Y] .

• This generalizes to as many random variables as you would
want to. In essence, we have for n random variables X1, X2, . . . , Xn:

E

[
n

∑
i=1

Xi

]
=

n

∑
i=1

E [Xi] .

3. Combining 1 and 2, we have the following. Let α, β be two real
numbers and X, Y be two random variables. Then:

E [α · X + β ·Y] = α · E [X] + β · E [Y] .

• Once again, this can be generalized. For n random variables
X1, X2, . . . , Xn and n real numbers α1, α2, . . . , αn:

E

[
n

∑
i=1

αi · Xi

]
=

n

∑
i=1

αi · E [Xi] .
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4. Let g(X) be a function of the random variable. Then, the expecta-
tion of g(X) is denoted by E [g(X)] and is equal to:

• for discrete random variable X with sample space S:

E [g(X)] = ∑
x∈S

g(x) · p(x).

• for continuous random variable X:

E [g(X)] =

+∞∫
−∞

g(x) · f (x)dx.

Let us see a couple of examples.

Profit expectation

A company makes $2,000 if they sell 4 units, $1,800 if they sell
3 units, $1,200 if they sell 2 units, lose $1,000 if they sell 1 unit,
and lose $3,000 if they sell no units. Each event from 0 to 4

customers is equally probable. How much should they expect
to make?

E [g(X)] =
4

∑
x=0

g(x) · p(x) =

= 2000 · 1
5
+ 1800 · 1

5
+ 1200 · 1

5
− 1000 · 1

5
− 3000 · 1

5
=

= $1000.

Circuit heat

Let X be a continuous random variable measuring the current
(in milliamperes, mA) in a wire with pdf f (x) = 0.05, for
0 ≤ x ≤ 20. The heat produced from the current is given by
the function g(x) = 10 · x (with x in milliamperes). What is the
mean heat produced by the current?

E [g(X)] =

20∫
x=0

g(x) · f (x) · dx =

20∫
x=0

g(x) · f (x)dx =

=

20∫
x=0

10 · x · 0.05 · dx =

20∫
x=0

0.5 · x · dx = 100.
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Variance

Expectations are important; they are also utterly revealing of a single
point of interest. Your decision-making process is bound to be very
different if I tell you that the expectation is you will make $1000 in
the following two scenarios:

1. You will make $500 or $1500 with probability 50% each;

2. You will lose $3000 or make $5000 with probability 50% each.

While in both cases the expected value is $1000, the second one
is much more “spread out” than the first one (where all values that
random variable X can take are closer to the expectation).

Variance is a quantity that helps answer the question “how spread
out is my distribution?” or “what is the variability of a random vari-
able?” Once again, due to the fact that random variables are random,
variances are important and they reveal the “spread” of the probabil-
ity distribution. A variance of 0 implies that the expectation always
comes true.

Definition 24 (Variance) With the term variance, we imply a measure of
the spread of the probability distribution. Intuitively, we may think of the
variance of a random variable X as the expected squared deviation of the
values that X is allowed to take compared to the expected value of X.

In mathematical terms:

Var [X] = E
[
(X− E[X])2

]
= E

[
X2
]
− (E [X])2 .

The definition implies that the variance is always nonnegative!
That is, we always have

Var [X] ≥ 0.

The variance is sometimes replaced by the standard deviation.

Definition 25 (Standard deviation) Standard deviation is also a measure
of the spread of a probability distribution. It is represented by SD [X] and is
related to the variance with the following expression:

SD [X] =
√

Var [X].

Unsurprisingly, it is commonly denoted by σ.

We refer to this measure as the standard deviation because it stan-
dardizes the units of the deviation. Note the following:

• Assume that X is a random variable measured in units (e.g., miles,
Kelvin, $, etc.).
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• Then, E [X] (or µ) is the expectation of random variable X and it is
also measured in units.

• On the other hand, Var [X] (or σ2) is the variance of random vari-
able X and it is measured in units squared (e.g., miles2, Kelvin2,
$2).

• Contrary to the variance, SD [X] (or σ) is the standard deviation
of random variable X and it is measured in units (the same as X,
miles, Kelvin, $).

Now, like we did for expectations, we separate the discussion in
discrete and continuous random variables. From now on, whenever
we are interested in the standard deviation we may simply take the
squared root of the variance.

Discrete random variables

Definition 26 (Variance of a discrete random variable) Let X be a
numerically-valued discrete random variable with sample space S and proba-
bility mass function p(x). Then, the variance of X is written as Var [X] and
is calculated as:

Var [X] = E
[
(X− E[X])2

]
= ∑

x∈S
(x− E [X])2 · p(x).

The variance is commonly written as σ2.

An unfair die

Consider the same “unfair” die as before with sample space
S = {1, 2, 3, 4, 5, 6} and p(1) = 1/3, p(2) = 1/6, p(3) =

1/6, p(4) = 1/6, p(5) = 1/12, p(6) = 1/12. What is the
variance?

Remember that E [X] = 2.75, as we calculated earlier. Then,
applying the formula for discrete random variables, we get:

• Var [X] = (1− 2.75)2 · 1
3 + (2− 2.75)2 · 1

6 + (3− 2.75)2 · 1
6 +

(4− 2.75)2 · 1
6 + (5− 2.75)2 · 1

12 + (6− 2.75)2 · 1
12 = 33

12 =

2.6875.

Recall that per Definition 24 Var [X] is also equal to E
[
X2] −

(E [X])2. Hence, we could have answered the question, using a
slightly different logic:
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An unfair die: second take

Remember that E [X] = 2.75, as we calculated earlier. Now, ap-
plying the other formula, we get:

• Var [X] = E
[
X2]− (E [X])2 = E

[
X2]− 2.752.

Let us focus on the first quantity (E
[
X2]). We have a function

of a random variable, g(X) = X2. Hence, applying the fourth
of the expectation properties, we may compute this as:

• E
[
X2] = 6

∑
x=1

x2 · p(x) = 12 · 1
3 + 22 · 1

6 + 32 · 1
6 + 42 · 1

6 + 52 ·
1

12 + 62 · 1
12 = 10.25.

Subtracting 2.752 = 7.5625, we get that Var [X] = 2.6875, as ex-
pected.

What about for a fair die, where each side (1, 2, 3, 4, 5, or
6) are equally probable? What is the variance for this die?
Provide a brief explanation why there is a difference in the
variance of the two dies.

Continuous random variables

Definition 27 (Variance of a continuous random variable) Let X be
a numerically-valued continuous random variable defined over (−∞,+∞)

with probability distribution function f (x). Then, the variance of X is
written as Var [X] and is calculated as:

Var [X] = E
[
(X− E[X])2

]
=

+∞∫
−∞

(x− E[X])2 · f (x)dx.

The variance is commonly written as σ2.
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Back to the rating system

Earlier, we saw that the expected rating for an employee in
the company was 3.77. How about the variance? Remember
that the ratings are between 1 and 5 (continuous) and have pdf
f (x) = 3

124 · x2.

We again apply the formula (but for continuous random vari-
ables now) and get:

Var [X] =

+∞∫
−∞

(x− E[X])2 · f (x)dx =

5∫
1

(x− 3.77)2 · 3
124
· x2dx =

=

5∫
1

(x− 3.77)2 · 3
124
· x2dx = 0.87161.

Like we did earlier, we can again apply the formula that Var [X] =

E
[
X2]− (E [X])2 and get the same result. This is left as an exercise to

the reader.

Earlier, we saw that good employees receive a rating score
of 4 or above and the distribution of their scores has pdf
f (x) = 2

9 · x for 4 ≤ x ≤ 5. What is the variance of the rating
score of a good employee?

Properties of the variance

The variance satisfies the following properties.

1. Let α be a real number (not a random variable). Then:

Var [α] = 0.

• In essence, this states that when you know what is going to
happen, there is no variance!

2. Let α be a real number and X be a random variable. Then:

Var [α · X] = α2 ·Var [X] .

3. Let X, Y be two independent 58 random variables. Then: 58 We did not need this assumption
when we were dealing with expecta-
tions!Var [X + Y] = Var [X] + Var [Y] .

• Like with the expectation, this also generalizes to more than
two random variables. We then have for n independent random
variables X1, X2, . . . , Xn:

Var

[
n

∑
i=1

Xi

]
=

n

∑
i=1

Var [Xi] .
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• Let α, β be real numbers and X be a random variable. Combin-
ing 1, 2, and 3 leads to:

Var [α · X + β] = Var [α · X] + Var [β] = α2 ·Var [X] .

4. We combine 2 and 3 to get the following. Let α, β be two real
numbers and X, Y be two independent random variables. Then:

Var [α · X + β ·Y] = α2 ·Var [X] + β2 ·Var [Y] .

• In general, for n independent random variables X1, X2, . . . , Xn

and n real numbers α1, α2, . . . , αn:

Var

[
n

∑
i=1

αi · Xi

]
=

n

∑
i=1

α2
i ·Var [Xi] .

Expectation and variance of well-known distributions

In this part, we will turn our focus to the distributions we have al-
ready discussed. What is the expected number of successes in n tri-
als? What is the expected number of earthquakes in the next decade?
What is the variance of a Gamma distributed random variable? We
will both derive and apply these quantities in this coming part.

Bernoulli, binomial, geometric, hypergeometric

Bernoulli distribution Recall that we say X is Bernoulli distributed
if it can take two values 0 or 1 (failure or success) with probabili-
ties q = 1− p and p, respectively. Then, based on the definition of
expectation, we have:

E [X] = p · 1 + (1− p) · 0 = p.

Similarly, based on the definition of variance, we get:

Var [X] = E
[

X2
]
− (E [X])2 = p · 12 + (1− p) · 02 − p2 = p · (1− p) .
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Binomial distribution We again apply the formula from the definition
of the binomial distribution with parameters n and p:

E [X] =
n

∑
x=0

x · p(x) =
n

∑
x=0

x
(

n
x

)
px(1− p)n−x =

=
n

∑
x=0

x
n!

x! · (n− x)!
px(1− p)n−x =

=
n

∑
x=0

n · (n− 1)!
(x− 1)! · (n− x)!

p · px−1 · (1− p)n−x =

= np
n

∑
x=1

(
n− 1
x− 1

)
px−1(1− p)n−x =

= np
n−1

∑
k=0

(
n− 1

k

)
pk(1− p)n−k−1 = (k = x− 1)

= np
m

∑
k=0

(
m
k

)
pk(1− p)m−k = (m = n− 1)

= np

Why is
m
∑

k=0
(m

k )pk(1− p)m−k = 1?

Finally, we omit the derivation for the variance, but the end result
is that:

Var [X] = n · p · (1− p) .

A certificate program

Students accepted in a certificate program graduate with
probability p = 0.75. This year, the certificate program has
accepted 300 students. How many are expected to successfully
finish the program?

Let X be the random variable of the number of students that
successfully finish the program. Then:

E [X] = n · p = 300 · 0.75 = 225 students.

Geometric distribution We now have:

E [X] =
1
p

and
Var [X] =

1− p
p2 .
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Shooting free throws

A kid learning basketball is shooting free throws with a prob-
ability of scoring equal to 25%. What are the expected free
throws the kid has to attempt until scoring for the first time?

Let X be the number of free throws shot until the first one is
made. X is a geometric random variable with p = 0.25, hence:

E [X] =
1
p
= 4 free throws.

Hypergeometric distribution As a reminder, we have a population of
N elements, K of which are successes (and N − K are failures). We
pick a sample of size n from the big population of N elements. We,
then, have for a random variable X that is following a hypergeomet-
ric distribution:

E [X] = n · K
N

and

Var [X] = n
K
N

(N − K)
N

N − n
N − 1

.

Poisson, exponential, and Gamma

In all three distributions, we assume the availability of a rate parame-
ter λ > 0.

Poisson distribution As a reminder, p(x) = e−λ · λx

x! . Let us apply this
in the general expectation formula:

E [X] =
∞

∑
x=0

x · p(x) =
∞

∑
x=0

xe−λ · λx

x!
=

=
∞

∑
x=1

xe−λ · λx

x!
=

= λ · e−λ
∞

∑
x=1

λx−1

(x− 1)!
=

= λ · e−λ
∞

∑
y=0

λy

y!
=

= λ · e−λ · eλ =

= λ.
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For the variance, we have:

Var [X] = E
[

X2
]
− (E [X])2 =

∞

∑
x=0

x2 · p(x)− λ2 =

=
∞

∑
x=0

x2e−λ · λx

x!
− λ2 =

=
∞

∑
x=1

xe−λ · λx

x!
− λ2 =

= λ · e−λ
∞

∑
x=1

x · λx−1

(x− 1)!
− λ2 =

= λ · e−λ

(
∞

∑
x=1

λ · λx−2

(x− 2)!
+

∞

∑
x=1

λx−1

(x− 1)!

)
− λ2 =

= λ · e−λ

(
∞

∑
y=0

λ · λy

y!
+

∞

∑
y=0

λy

y!

)
− λ2 =

= λ · e−λ
(

λe−λ + e−λ
)
− λ2 =

= λ2 + λ− λ2 = λ.

Hence, both the expectation and the variance of the Poisson is distri-
bution is λ.

Exponential distribution This is a continuous distribution, hence the
derivation of the expectation and the variance slightly change.

E [X] =

∞∫
0

x · f (x) · dx =

∞∫
0

λxe−λx · dx =

=
1
λ
·

∞∫
0

ye−ydy (y = λ · x =⇒ dx = dy/λ)

=
1
λ

(
−e−y − ye−y)∣∣∞

0 =
1
λ

.

The variance is
Var [X] =

1
λ2 .

Gamma distribution We finish this part with the Gamma distribution.

E [X] =
n
λ

,

Var [X] =
n
λ2 .
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Chasing cars

A transportation engineer is counting vehicles that are passing
through an intersection. They have observed that vehicles pass
following a Poisson distribution with rate 1 vehicle every 30

seconds.

• The expected number of vehicles in the next 30 seconds is

λ = 1.

• The expected time until the next vehicle is

1
λ
=

1
1/30 seconds

= 30 seconds.

• The expected time until the 10th vehicle passes is

10
λ

=
10

1/30 seconds
= 300 seconds = 5 minutes.

Be careful with the rate you are using! In general, given a rate λ in
some time unit, then if we are asked to find an expectation in time t,
we need to replace λ with λ · t.

Chasing cars: part 2

A transportation engineer is counting vehicles that are passing
through an intersection. They have observed that vehicles pass
following a Poisson distribution with rate 1 vehicle every 30

seconds. How many vehicles should they expect to see in 3

hours?

• This is still a Poisson distribution with a rate of 1 every 30

seconds.

• That said, it would be easier to transform the rate into the
period asked – 3 hours.

• 3 hours = 10800 seconds =⇒ λ = 360 vehicles per 3 hours.

Uniform

Recall that there is a discrete and a continuous uniform distribution.
We have:

• Discrete between a and b, that is X takes values in a, a + 1, . . . , b:

1. E [X] = a+b
2 .
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Figure 26: An example of how two distributions can have the same mean and variance
but yet not be similar at all.

2. Var [X] = (b−a+1)2−1
12 .

• Continuous in (a, b):

1. E [X] = a+b
2 .

2. Var [X] = (b−a)2

12 .

Normal

Last, but not least, we see the normal. The good news is that µ and
σ2 are both in the definition of the distribution!

Food for thought

Are two distributions with the same expectation and variance the
same distributions? The answer is no: consider for a counterexample
an exponential distribution with λ = 0.5 and a normal distribution
N (2, 4). Their means are both equal to 2 and their variances are both
equal to 4, but they are categorically not the same distribution (see
Figure 26).
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Review

Discrete random variables

Name Parameters Values pmf E [X] Var [X]

Bernoulli 0 < p < 1 {0, 1}
p(0) = 1− p

p(1) = p
p p(1− p)

Binomial 0 < p < 1, n ≥ 0 {0, 1, . . . , n} p(x) =
(

n
x

)
px · (1− p)n−x np np(1− p)

Geometric 0 < p < 1 {1, 2, . . .} p(x) = (1− p)x−1 · p 1
p

1−p
p2

Hypergeometric N, K, n ≥ 0 {1, 2, . . .} p(x) =
(K

x)(
N−K
n−x )

(N
n )

n K
N n · K

N ·
N−K

N · N−n
N−1

Poisson λ > 0 {0, 1, . . .} p(x) = e−λ λx

x!
λ λ

Uniform - [a, b] p(x) =
1

b− a + 1
a+b

2
(b−a+1)2−1

12

Continuous random variables

Name Parameters Values pdf E [X] Var [X]

Uniform - [a, b] f (x) =
1

b− a
a+b

2
(b−a)2

12

Exponential λ > 0 [0,+∞) f (x) = λ · e−λx 1
λ

1
λ2

Gamma λ > 0, k > 0 [0,+∞) f (x) = λk ·xk−1·e−λx

Γ(k)
k
λ

k
λ2

Erlang λ > 0, integer k > 0 [0,+∞) f (x) = λk ·xk−1·e−λx

(k−1)!
k
λ

k
λ2

Normal µ, σ2 (−∞,+∞) f (x) =
1√

2π · σ
e−

(x−µ)2

2σ2 µ σ2
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10. The central limit theorem

Learning objectives

After these lectures, we will be able to:

• Explain why the normal distribution appears often in real
life.

• Recall and use the central limit theorem.

Motivation: The normal distribution

Why is the normal distribution so ubiquitous? Why is it that in many
instances we see normally distributed quantities around us?

Motivation: Testing a hypothesis

Consider the case of trying to predict the outcome of an election. A
good way to do so would be to pick a sample n of potential voters,
and ask them what they would be voting for. Say x say they are
voting for Candidate 1: this could lead you to deduce that x/n is
the proportion of the vote that Candidate 1 would get in the general
election. But, what can you say for the distribution of the proportion?
How probable is it that your prediction is off?

Introduction

These lecture notes are organized as follows. First, we motivate why
the central limit theorem applies; later in the notes, we state the theo-
rem in its entirety. We finish this lecture with an example.

Motivating the central limit theorem

Say we throw a “fair” die (uniform distribution of getting any of the
six numbers) 100,000 times and we collect back the appearances of
each number. We then plot our results (see Figure 27) and observe
that, as expected, every number appears equally probably. Now,
let’s consider a game of Monopoly. In this board game, you throw 2

dies and the summation of the two numbers is the number of steps
you are expected to take: note that this number goes from 2 (both
dies land on the side of 1) to 12 (both dies land on the side of 6). We
already saw earlier how the probability of getting a 7 is higher than
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0 1 2 3 4 5 6 7
0
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10,000
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20,000

Figure 27: The number of occurrences for
each number from 1 to 6 for one fair die.
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0

5,000
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15,000

20,000

Figure 28: The number of occurrences for
numbers from 2 to 12 for two fair dies.
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0
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Figure 29: The number of occurrences for
numbers from 5 to 30 for five fair dies.

10 20 30 40 50
0

2,000

4,000

6,000

8,000

10,000

12,000

Figure 30: The number of occurrences for
numbers from 10 to 60 for ten fair dies.

the rest, which is revealed also in Figure 28. There seems to be an
interesting pattern emerging... Let’s investigate this more!

We now proceed to show what happens when we toss 5 and 10

dies (see Figures 29 and 30). The pattern is even clearer now: it seems
like the summation of many random variables with the same dis-
tribution follows a normal distribution! Let’s see whether we can
formally state what we observe.

Theorem 1 (The central limit theorem) Let Xi, i = 1, . . . , n be a series
of independent, identically distributed random variables. 59 Also, define 59 Continuous or discrete, Bernoulli,

binomial, geometric, Poisson, exponen-
tial, uniform, normal – any distribution.
Note though that all random variables
need to follow the same distribution.

Z =
n
∑

i=1
Xi (i.e., as the summation of all random variables Xi) or define

Y =
n
∑

i=1
Xi/n (i.e., as the average of all Xi).

Then both Z and Y follow a normal distribution when n is large enough. 60 60 What constitutes “large enough”?
We will investigate this later in the
semester.What is the implication of this result? Say we are measuring some

random variable that is an average of independent random variables
coming from the same distribution; then this average is expected to
be normally distributed! This is why the normal distribution appears
so often in real life. And this is pretty interesting since we live in
a world full of data that does not seem to follow any “clean”, nice
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distributions: yet, selecting samples from this data and analyzing
them provides us with a nice normal distribution to work with.

Waiting for a bus

Assume that the time you have to wait for a bus every day is
uniformly distributed between 0 and 4 minutes.

What is the probability you have to wait for more than 3

minutes for the bus today?
a)

What is the probability you have to wait on average
for more than 3 minutes for the bus during 5 days of
waiting for the bus every day?

b)

What is the probability you have to wait on average for
more than 3 minutes for the bus during your stay in
Urbana-Champaign?

c)

The first one is pretty straightforward: uniform distribu-
tion, continuous between 0 and 4: hence, the probability
is 1

4 = 0.25.

a)

The second one is tougher. Is n = 5 (for 5 days of wait-
ing for the bus every day) big enough for the central
limit theorem to apply? And does it help to apply it?

b)

The third one is similar to our previous reasoning–but
keeping in mind that your stay in Urbana-Champaign
is for 3-4 years, we may assume that n (number of days
waiting for a bus) is pretty big. Does the central limit
theorem help?

c)

Based on the central limit theorem, the average time we wait for
the bus is normally distributed. Let us visualize what this means
(much like what we did for the dies earlier). We will generate 10000

random variables and present the results depending on the number
of times each interval of numbers appears.

Finally, for the last question (where the central limit theorem
would clearly hold as n is very big), we can immediately find the
probability using a normal distribution. The details of the normal
distribution will be discussed later in the semester.
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Figure 31: The amount of time we spend waiting for one bus.
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Figure 32: The average amount of time
we spend waiting for a bus for a total of
n = 5 days.
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Figure 33: Visualizing the “probability”
of waiting (on average) for more than 3

minutes in 5 days. It is shown in red.
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The central limit theorem

Expectation and variance review

Let us recall a few important properties from calculating expecta-
tions and variances. Given a series of independent random variables
Xi, i = 1, . . . , n, we have that:

E

[
n

∑
i=1

Xi

]
=

n

∑
i=1

E [Xi] .

Var

[
n

∑
i=1

Xi

]
=

n

∑
i=1

Var [Xi] .

Moreover, recall that:

E [α · X] = α · E [X] .

Var [α · X] = α2 ·Var [X] .

Combining, we have that for quantities

n
∑

i=1
Xi

n , we get:

E


n
∑

i=1
Xi

n

 =

n
∑

i=1
E [Xi]

n
.

Var


n
∑

i=1
Xi

n

 =

n
∑

i=1
Var [Xi]

n2 .

Assuming that we have µ = E [X1] = E [X2] = . . . = E [Xn] and
σ2 = Var [X1] = Var [X2] = . . . = Var [Xn], we may write that:

E

[
n

∑
i=1

Xi

]
= n · µ E


n
∑

i=1
Xi

n

 =
n · µ

n
= µ.

Var

[
n

∑
i=1

Xi

]
= n · σ2 Var


n
∑

i=1
Xi

n

 =
n · σ2

n2 =
σ2

n
.
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The full theorem

We are now ready to state the central limit theorem in its entirety.

Theorem 2 (The central limit theorem) Let Xi, i = 1, . . . , n be a series
of independent, identically distributed random variables with expected value

E [Xi] = µ and variance Var [Xi] = σ2. Define Z =
n
∑

i=1
Xi (i.e., as

the summation of all random variables Xi) and Y =
n
∑

i=1
Xi/n (i.e., as the

average of all Xi).

Then:

• Z follows a normal distribution when n is large enough with parameters

µZ =
n
∑

i=1
E [Xi] = n · µ and σ2

Z =
n
∑

i=1
Var [Xi] = n · σ2.

Z ∼ N
(
n · µ, n · σ2) .

• Y follows a normal distribution when n is large enough with parameters

µY = 1
n

n
∑

i=1
E [Xi] = µ and σ2

Z = 1
n

n
∑

i=1
Var [Xi] =

σ2

n .

Y ∼ N
(

µ, σ2

n

)
.

Random buses

The time you have to wait for a bus every day is uniformly
distributed between 0 and 4 minutes. What is the probability
you have to wait for more than or equal to 2.2 minutes for the
bus on average in the next 300 days?

We may now fully use the central limit theorem.

• As n = 300 (big enough), we know that the average time
you will wait for the bus in the next 300 days is normally
distributed with mean µ and variance σ2/300.

• The time you wait for a single bus is uniformly dis-
tributed with mean µ = 0+4

2 = 2 minutes and variance

σ2 = (4−0)2

12 = 4/3 minutes2.

• Combining, the average time T you wait for the bus follows
N (2, 4

900 ).



ie 300 109

Random buses (cont’d)

We are interested in P(T > 2.2) = 1− P(T ≤ 2.2). First let us
convert to the proper z value:

Z =
X− µ

σ
=

2.2− 2
2/30

= 3.

Looking at the z-table:

P(T ≤ 2.2) = 0.9987 =⇒ P(T ≥ 2.2) = 1− 0.9987 = 0.0013.
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11. Jointly distributed random
variables

Learning objectives

After these lectures, we will be able to:

• Describe and recognize jointly distributed random variables.

• Define joint, marginal, and conditional probability mass
functions for discrete random variables.

• Define joint, marginal, and conditional probability distribu-
tion functions for continuous random variables.

• Use joint, marginal, and conditional probability mass and
distribution functions to calculate probabilities.

Motivation: “Can you hear me now”?

Not all of us pay attention all the time in a Zoom call; sometimes it
is our fault (we are distracted or busy), but others it is not (technical
difficulties, bad reception). So the question becomes: how many
times does something need to be repeated before you hear it? Note
that it does not only depend on whether you are paying attention
(which is a random variable), but also on whether you are having a
clear connection (another random variable).

Jointly distributed random variables

Real life and its outcomes can be viewed as a combination of random
events, rather than a single random event. Succeeding in an exam has
many factors that do not rely on only your preparation: you need to
be healthy and well-rested, you need to be focused during the exam,
you need to have luck at your side, you need to have a calculator
whose batteries are still working. And even when all of these things
align, you also need to be there on time, which means that you need
to catch a bus, that there is no construction causing traffic jams, etc.
We can go on like this a lot.

The truth is that in this class we have focused on single random
variables that are distributed their own way. What about the case
where two random variables are distributed alongside each other?

But, wait? Did we not discuss the probability of two events happening
hand-in-hand during the first lectures of the course? And did we not discuss
specifically what happens if those two events are independent61 or not? 61 Recall independence: it implies that

knowledge of one event happening
does not affect our probabilities of the
other event happening.
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You are correct. We have discussed what happens when two
events are happening at the same time. We also discussed what the
probability is that an event happens given another event happening.
However, there are two caveats in our discussion earlier:

1. We only focused on discrete (countable) events: it is time we see
what this implies in the continuous space too.

2. We saw this in terms of events and sets. We are now going to have
that discussion in terms of distributions, probability mass/density
functions.

Definition

We begin with the definition of jointly distributed random variables.

Definition 28 (Jointly distributed random variables) Let X and Y
be two random variables. The probability distribution that defines their
simultaneous behavior is referred to as a joint probability distribution.
The two random variables X and Y are then called jointly distributed
random variables.

Examples of jointly distributed random variables

Here are some examples of jointly distributed random vari-
ables.

• The times you have to repeat yourself on the phone and
your signal reception.

• The grade you receive in an exam and the amount of sleep
you’ve had the night before.

• The performance of two or more stocks in your portfolio.

• The box office of a movie and the critical reception.

We observe here that jointly distributed does not imply immedi-
ate effect. For example, a student could get a very high grade in an
exam, even if they slept very little the night before; or a movie could
make a lot of money in the box office, despite being universally hated
by reviewers. However, jointly distributed random variables imply
that what we see is a combination of random variables rather than
outcome of a single random variable.
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Are the following better modeled as a single random variable
or as jointly distributed random variables?

• Getting a higher grade in an exam than the person sitting
next to you?

• Throwing a die?

• Throwing two dies and having the first die land on a higher
number than the second one?

An example

Securing a position after college might require some effort.. If the
economy is doing well (“is good”), then a student could get more job
interview invitations, and consequently there are more chances for
a job opportunity. If the economy is average, or if it is outright bad,
then a student may struggle to get interviews and/or a job..

Based on our definitions, the state of the economy is a random
variable. The same can be said about the number of job interviews
that a student gets invited to. In the end of the day, the number of
interviews that a student needs to go on before they secure a posi-
tion after graduation is a jointly distributed random variable. Let’s
assume that the probabilities are as given in Table 5.

Table 5: Number of job interviews required to get a job depending on the state of the
economy.

Y=state of the economy
X=job interviews to get a job Bad Average Good

1 0.01 0.05 0.20

2 0.03 0.05 0.18

3 0.03 0.12 0.08

≥4 0.08 0.12 0.05

Jointly distributed discrete random variables

If X and Y are discrete random variables, then (X, Y) is called a
jointly discrete bivariate random variable.

Definition 29 (Joint probability mass function) The joint probabil-
ity mass function is defined as:

fXY(x, y) = P(X = x, Y = y).

It follows the next three properties:
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1. fXY(x, y) ≥ 0, ∀x, y.

2. ∑
x

∑
y

fXY(x, y) = 1.

3. P((X, Y) ∈ A) = ∑ ∑(x,y)∈A fXY(x, y).

A couple of quick notes about the notation here. You will observe
that the joint probability mass function is given by fXY(x, y). We had
previously reserved f (·) for continuous random variables, keeping
p(·) for discrete ones. For convenience, we only use f (·) for joint
probability distributions.

Additionally, we notice that there is a subscript in the function.
The subscript is supposed to reveal which random variables the
function is including. For example fXY(3, 4) would imply that the
function is considering random variables X and Y and is asking for
them to be equal to 3 and 4, respectively.

Note that this definition is easily generalized for more than two
variables: if Xi are discrete random variables for i = 1, . . . , n, then
(X1, . . . , Xn) is called a jointly distributed discrete multivariate
random variable with joint pmf:

fX1X2 ...Xn(x1, x2, . . . , xn) = P(X1 = x1, X2 = x2, . . . , Xn = xn).

Following the same notation as before, we see from the subscript
of the function that this distribution contains random variables
X1, X2, . . . , Xn.

Getting a job after college

Let’s see: do the probabilities provided in the example earlier
satisfy the first two properties?

1. fXY(x, y) ≥ 0, ∀x, y. This is true, as all entries for the 12

cases are all positive.

2. ∑
x

∑
y

fXY(x, y) = 0.01 + 0.05 + 0.20 + . . . + 0.05 = 1. This is

also true.

Let’s dwell a little on the third property now.
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Getting a job after college

What is the probability that:

1. a student gets a job in 1 interview and that the economy is
good?

Y
X Bad Average Good
1 0.01 0.05 0.20
2 0.03 0.05 0.18

3 0.03 0.12 0.08

≥4 0.08 0.12 0.05

The probability is 20%.

2. a student gets a job in less than or equal to 3 interviews
and the economy is average?

Y
X Bad Average Good
1 0.01 0.05 0.20

2 0.03 0.05 0.18

3 0.03 0.12 0.08

≥4 0.08 0.12 0.05

The probability is 22%.

3. a student gets a job in more than 3 interviews?

4. the economy is good?

5. a student gets a job in 1 interview if we know that the
economy is good?

Questions 3, 4, and 5 seem to require a little different logic. Could
we add all the outcomes that include the specific clause we are after?
For example, could we simply add all the probabilities of a good
economy and say that this is the probability that the economy is
good? But for the last one, we know that the economy is good. How
can we use this fact to calculate the required probability? Could we
use conditional probabilities?

Marginal probability mass function

Definition 30 (Marginal probability mass function) The marginal
probability mass function (marginal pmf) of a discrete random variable is
computed by summing over all possible values of the other random variable.
For two random variables, X and Y:
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1. The marginal distribution of X:

fX(x) = P(X = x) = ∑
y

fXY(x, y)

2. The marginal distribution of Y:

fY(y) = P(Y = y) = ∑
x

fXY(x, y)

The marginal distribution of a random variable answers the ques-
tion: “what is the probability that X takes a certain value, regardless
of Y?” 62 62 And vice versa for the marginal

distribution of Y.Going back to the motivation from earlier:

Getting a job after college

What is the probability that:

1. a student gets a job in 1 interview and that the economy is
good? The probability is 20%.

2. a student gets a job in less than or equal to 3 interviews
and the economy is average. The probability is 22%.

3. a student gets a job in more than 3 interviews?

We are after the probability of P(X > 3). Based on the defi-
nition of marginal distributions, we have that:

P(X = x) = ∑
y

fXY(x, y) =⇒

=⇒ P(X > 3) = P(X ≥ 4) = 0.08 + 0.12 + 0.05 = 0.25.

Y
X Bad Average Good
1 0.01 0.05 0.20

2 0.03 0.05 0.18

3 0.03 0.12 0.08

≥4 0.08 0.12 0.05

The probability is 25%.
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Getting a job after college (cont’d)

4. the economy is good?

We are after the probability of P(Y = Good). Following a
similar logic:

P(Y = y) = ∑
x

fXY(x, y) =⇒

=⇒ P(Y = Good) = 0.20 + 0.18 + 0.08 + 0.05 = 0.51.

Y
X Bad Average Good
1 0.01 0.05 0.20
2 0.03 0.05 0.18
3 0.03 0.12 0.08
≥4 0.08 0.12 0.05

The probability is 51%.

5. a student gets a job in 1 interview if we know that the
economy is good?

For calculating marginal distributions in discrete random events
given in tabular format, we may also add up the probabilities in the
columns and rows and obtain:

Y=state of the economy
X=job interviews to get a job Bad Average Good fX(x)

1 0.01 0.05 0.20 0.26

2 0.03 0.05 0.18 0.26

3 0.03 0.12 0.08 0.23

≥4 0.08 0.12 0.05 0.25

fY(y) 0.15 0.34 0.51 1

Here the columns are showing the probability of the state of the
economy (alone) which are bad with 15%, average with 34%, and
good with 51%, whereas the rows are showing the number of inter-
view (26% for 1, 26% for 2, 23% for 3, 25% for more than 3).

Conditional probability mass function

Definition 31 (Conditional probability mass function) The condi-
tional probability mass function (conditional pmf) of a discrete random
variable given values for the other ones is computed by dividing the joint
pmf of all over the marginal pmf of the others. For two random variables, X
and Y:

1. The conditional distribution of X given Y = y:

fX|Y=y(x) = fX|y = P(X = x|Y = y) =
fXY(x, y)

fY(y)
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2. The conditional distribution of Y given X = x:

fY|X=x(y) = fY|x = P(Y = y|X = x) =
fXY(x, y)

fX(x)

Of course, for the conditional pmf to make sense, we need that fX(x) > 0
and fY(y) > 0.

One more note of notation. Observe how the subscript has changed
to reflect the fact that we know what Y or X is. We write:

fX|Y=y = fX|y,

which is read as the “conditional pmf of random variable X given
that random variable Y is equal to y” or, simply the “conditional pmf
of random variable X given y.”

Let us revisit our motivation.
Getting a job after college

What is the probability that:

1. a student gets a job in 1 interview and that the economy is
good? The probability is 20%.

2. a student gets a job in less than or equal to 3 interviews
and the economy is average. The probability is 22%.

3. a student gets a job in more than 3 interviews?

The probability is 25%.

4. the economy is good? The probability is 51%.

5. a student gets a job in 1 interview if we know that the
economy is good?

This is the definition of a conditional probability. Specifi-
cally, we want to calculate P(X = 1|Y = Good).

P(X = 1|Y = Good) =
fXY(1, Good)

fY(Good)
=

0.2
0.51

= 0.3922.

Y
X Bad Average Good fX(x)
1 0.01 0.05 0.20 0.26

2 0.03 0.05 0.18 0.26

3 0.03 0.12 0.08 0.23

≥4 0.08 0.12 0.05 0.25

fY(y) 0.15 0.34 0.51 1
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One full example

As interesting as this example has been, the truth is that in many
cases we cannot enumerate easily all cases. In those instances, we
turn to calculus. Let us see a similar case:

Jointly distributed discrete random variables

Two discrete random variables X and Y have a joint distribu-
tion of fXY(x, y) = x+y+1

c , for x and y equal to 0, 1, or 2.

1. What should c be?

2. What is P(X ≤ 1, Y = 1)?

3. What is P(Y = 1)?

4. What is P(X ≤ 1|Y = 1)?

For calculating c, we need to use the second property.

Getting the joint pmf

2

∑
x=0

2

∑
y=0

fXY(x, y) =
2

∑
x=0

2

∑
y=0

x + y + 1
c

= 1 =⇒

=⇒ 1
c
+

2
c
+

3
c
+

2
c
+

3
c
+

4
c
+

3
c
+

4
c
+

5
c
= 1

=⇒ c = 27.

With the full joint pmf, we can answer the remaining questions:

Using the joint pmf

P(X ≤ 1, Y = 1) =
1

∑
x=0

fXY(x, 1) =
2

∑
x=0

x + 2
27

=
2

27
+

3
27

=
5

27
.

We now move our focus to the marginal distribution, which can be
found as:

Computing and using the marginal pmf

fY(y) = P(Y = y) =
2

∑
x=0

fXY(x, y) =

=
0 + y + 1

27
+

1 + y + 1
27

+
2 + y + 1

27
=⇒ fY(y) =

3y + 6
27

.

Hence P(Y = 1) = fY(1) = 9
27 = 1

3 .
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To conclude this, we may combine the joint and marginal pmf to get
the conditional pmf:

Computing and using the conditional pmf

fX|Y=y(x) = P(X = x|Y = y) =
fXY(x, y)

fY(y)
=

x+y+1
27

3y+6
27

=
x + y + 1

3y + 6

Finally: P(X ≤ 1|Y = 1) = fX|Y=1(0) + fX|Y=1(1) =
2
9 + 3

9 = 5
9 .

Jointly distributed continuous random variables

If X and Y are continuous random variables, then (X, Y) is called a
jointly continuous bivariate random variable.

Definition 32 (Joint probability distribution function) The joint
probability distribution function is defined as:

fXY(x, y).

Like in the simple continuous random variables, fXY reveals a relative likeli-
hood rather than a probability value. It also follows three properties:

1. fXY(x, y) ≥ 0, ∀x, y.

2.
+∞∫
−∞

+∞∫
−∞

fXY(x, y)dxdy = 1.

3. P((X, Y) ⊂ R) =
∫∫
R

fXY(x, y)dxdy.

Once again, the definitions is easy to generalize to more than two
variables: if Xi are continuous random variables for i = 1, . . . , n, then
(X1, . . . , Xn) is called a jointly distributed continuous multivariate
random variable with joint pdf:

fX1X2 ...Xn(x1, x2, . . . , xn).

In the end of the section, we given an example with more than 2

random variables so that you can practice with it – it will come in
hand during Lecture 13.
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A chemical mixture

A product is a mixture of two materials: let the volume of
material 1 used be represented as X, and the volume of mate-
rial 2 used be represented as Y. The joint probability density
function of the two random variables is

fXY(x, y) = c (2x + 3y) , 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

1. What is c?

2. What is the probability the first material has volume less
than or equal to 0.5, and the second material has volume
between 0.25 and 0.5?

Similarly to what we did for discrete random variables (with the
main difference that we now need to integrate over the values that X
and Y can take), we get:

Computing the joint pdf

1. From the second property of joint pdfs for continuous
random variables, we have:

+∞∫
−∞

+∞∫
−∞

fXY(x, y)dxdy = 1 =⇒
1∫

0

1∫
0

c (2x + 3y) dxdy = 1 =⇒

=⇒ c
1∫

0

(
x2 + 3xy

)∣∣∣1
0

dy = 1 =⇒ c
1∫

0

(3y + 1)dy = 1 =⇒

=⇒ c
(

3
y2

2
+ y
)∣∣∣∣1

0
= 1 =⇒ c

5
2
= 1 =⇒ c =

2
5

.



ie 300 121

Using the joint pdf

2. Knowing that fXY(x, y) = 2
5 (2x + 3y), we may calculate the

probability P(X ≤ 0.5, 0.25 ≤ Y ≤ 0.5) as follows. Recall
that we are talking about continuous random variables, so
we will always integrate!

P(X ≤ 0.5, 0.25 ≤ Y ≤ 0.5) =
0.5∫
0

0.5∫
0.25

fXY(x, y)dydx =

=

0.5∫
0

0.5∫
0.25

2
5
(2x + 3y) dydx =

2
5

0.5∫
0

(
2xy + 3

y2

2

)∣∣∣∣0.5

0.25
dx =

=
2
5

0.5∫
0

(
0.5x +

9
32

)
dx =

2
5

(
0.5

x2

2
+

9
32

x
)∣∣∣∣0.5

0
=

13
160

Marginal probability distribution function

Definition 33 (Marginal probability distribution function) The
marginal probability distribution function (marginal pdf) of a contin-
uous random variable is computed by integrating over all possible values of
the other random variable. For two random variables, X and Y:

1. The marginal distribution of X:

fX(x) =
+∞∫
−∞

fXY(x, y)dy

2. The marginal distribution of Y:

fY(y) =
+∞∫
−∞

fXY(x, y)dx

Let us return to our chemical mixture:

Computing and using the marginal pdf

As a reminder, we have fXY(x, y) = 2
5 (2x + 3y) for the joint

pdf of two continuous random variables X and Y (volume of
material 1 and 2, respectively) taking values between 0 and 1.
What is the probability that:

1. the volume of material 1 is less than 0.5?

2. the volume of material 2 is between 0.25 and 0.5?
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Computing and using the marginal pdf

1. First, we calculate fX(x). It is:

fX(x) =
+∞∫
−∞

fXY(x, y)dy =

1∫
0

2
5
(2x + 3y) dy =

1
5
(4x + 3) .

We can now use fX(x):

P(X ≤ 0.5) =
0.5∫
0

fX(x)dx =

0.5∫
0

1
5
(4x + 3) dx = 0.4.

2. Then, we do the same for fY(y):

fY(y) =
+∞∫
−∞

fXY(x, y)dx =

1∫
0

2
5
(2x + 3y) dx =

1
5
(6y + 2) .

And we finish the question by calculating the proper inte-
gral:

P(0.25 ≤ Y ≤ 0.5) =
0.5∫

0.25

fY(y)dy =

0.5∫
0.25

1
5
(6y + 2) dy =

17
80

.

Conditional probability distribution function

Definition 34 (Conditional probability distribution function) The
conditional probability distribution function (conditional pdf) of a
continuous random variable given values for the other ones is computed
by dividing the joint pdf of all over the marginal pdf of the others. For two
random variables, X and Y:

1. The conditional distribution of X given Y = y:

fX|Y=y(x) = fX|y =
fXY(x, y)

fY(y)

2. The conditional distribution of Y given X = x:

fY|X=x(y) = fY|x =
fXY(x, y)

fX(x)

Once again, the conditional pdf is only defined when fX(x) > 0 and
fY(y) > 0.

Let’s go back to our chemical mixture example.
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Computing and using the conditional pdf

What is the probability the first material has a proportion less
than or equal to 50%, given that the second material has a
proportion equal to 30%?

To contrast this with the following question, we shall name
this the conditional distribution route.

The conditional distribution route. First, we calculate
fX|Y=y(x) as:

fX|Y=y(x) =
fXY(x, y)

fY(y)
=

2
5 (2x + 3y)
1
5 (6y + 2)

=
4x + 6y
6y + 2

.

Replacing Y = 0.3 as is known, we get:

fX|Y=0.3(x) =
4x + 1.8

3.8
.

Finally, we may calculate P(X ≤ 0.5|Y = 0.3) as follows:

P(X ≤ 0.5|Y = 0.3) =
0.5∫
0

4x + 1.8
3.8

dx = 0.3684.

And here is one more conditional to practice basic probability theory:

Calculating conditional probabilities

What is the probability the first material has a proportion less
than or equal to 50%, given that the second material has a
proportion between 25% and 50%?

The basic probability theory route. Remember that P(A|B) =

P(A ∩ B)/P(B). In our case, we have already calculated P(A ∩
B) = P(X ≤ 0.5, 0.25 ≤ Y ≤ 0.5) = 13

160 and P(B) = P(0.15 ≤
Y ≤ 0.5) = 17

80 . Combining:

P(X ≤ 0.5|0.25 ≤ Y ≤ 0.5) =
13/160
17/80

=
13
34

.

A multivariate example

Here, we provide a small example for a joint distribution with 4

random variables. More specifically:
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A 4-component machine

Suppose that a machine consists of four components, whose
lifetimes (in years) are jointly distributed with the following
pdf:

fX1X2X3X4(x1, x2, x3, x4) = c · e−2x1 e−x2 e−3x3 e−0.5x4 .

• What should c be for this to be a valid pdf?

• What is the probability the first component survives for
more than one year?

For the first question, we want

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

fX1X2X3X4(x1, x2, x3, x4)dx4dx3dx2dx1 = 1 =⇒

=⇒
+∞∫
0

+∞∫
0

+∞∫
0

+∞∫
0

fX1X2X3X4(x1, x2, x3, x4)dx4dx3dx2dx1 = 1 =⇒

=⇒ c
+∞∫
0

+∞∫
0

+∞∫
0

+∞∫
0

e−2x1 e−x2 e−3x3 e−0.5x4 dx4dx3dx2dx1 = 1 =⇒

=⇒ c
0.5

+∞∫
0

+∞∫
0

+∞∫
0

e−2x1 e−x2 e−3x3 dx3dx2dx1 = 1 =⇒

=⇒ c
0.5 · 3

+∞∫
0

+∞∫
0

e−2x1 e−x2 dx2dx1 = 1 =⇒

=⇒ c
0.5 · 3 · 1

+∞∫
0

e−2x1 dx1 = 1 =⇒ c
0.5 · 3 · 1 · 2 = 1 =⇒ c = 3.

For the second question, first calculate the marginal pdf
fX1(x1):

fX1 (x1) =

+∞∫
0

+∞∫
0

+∞∫
0

fX1X2X3X4(x1, x2, x3, x4)dx4dx3dx2 = 2e−2x1 .

Then, the probability it survives for more than one year is

P(X1 > 1) = 1− P(X1 ≤ 1) = 1−
1∫

0

2e−2x1 dx1 = 0.1353.
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Review

A very brief summary of today’s lecture follows. For two random
variables X and Y that are jointly distributed, we have the following:

Joint pmf/pdf

• TL;DR: How are both variables distributed as simultaneously?

– Discrete: what is P(X = x and Y = y)?

– Continuous: what is the relative likelihood of X having the
value of x and Y getting the value of y?

• Denoted by fXY(x, y).

• Follows three properties:

– Discrete:

1. fXY(x, y) ≥ 0.

2. ∑
x

∑
y

fXY(x, y) = 1.

3. P((X, Y) ∈ A) =

∑ ∑(x,y)∈A fXY(x, y).

– Continuous:

1. fXY(x, y) ≥ 0, ∀x, y.

2.
+∞∫
−∞

+∞∫
−∞

fXY(x, y)dxdy = 1.

3. P((X, Y) ⊂ R) =∫ ∫
R

fXY(x, y)dxdy.

Marginal pmf/pdf

• TL;DR: I am only interested in one of the random variables.

– Discrete: Let’s lose Y. What P(X = x)?

– Continuous: Let’s lose Y. What the relative likelihood of X
getting the value of x?

• Denoted by fX(x) or fY(y).

Conditional pmf/pdf

• TL;DR: I am given information on one of the random variables.

– Discrete: I know what Y is! It is equal to y. What is P(X =

x|Y = y)?

– Continuous: I know what Y is! It is equal to y. What is the
relative likelihood of X taking value x now?

• Denoted by fX|y(x) or fY|x(y).

Recall that all definitions shown here for both discrete and contin-
uous random variables may be extended to more than 2 random
variables X1, X2, . . .



ie 300 126

12. Jointly distributed random
variables: extensions

Learning objectives

After these lectures, we will be able to:

• Calculate and use the expectation and variance of jointly
distributed random variables.

• Define, calculate, and use the conditional expectation.

• Recognize independence in joint distributions.

• Use independence to calculate probabilities.

• Quantify the level of dependence using covariance and
correlation.

• Calculate the expectation and variance of multiple random
variables, independent or not.

Motivation: What should I expect?

Consider two jointly distributed random variables (X, Y). What
should I expect X to be? What should I expect Y to be? What should
I expect X to be if I already know what Y is? Does that change or
does it stay the same?

Motivation: Dependence

Knowing whether the value of X affects Y or not is important. Con-
sider, for example, a movie studio planning a series of superhero
movies. If the first movie is unsuccessful, and is panned by critics
and the audience, then the studio may want to rethink the sequel and
subsequent movies. We would want to know the level of dependence
between two random variables to help us make decisions better.

Expectations and variances

Once again, we have discussed expectations and variances before;
however, those were in the setting of single random variables. Here,
we generalize in two or more random variables. As a motivating
example, consider a student taking two classes: the student may be
interested in the expected grade in one of the two classes alone.
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This may ring a bell. Recall that during our last lecture, we dis-
cussed the marginal pmf/pdf of jointly distributed random variables
(X, Y). We specifically said that they come in play when we want to
answer the question “what is the probability that X takes a certain
value, regardless of Y?” Well, we will use this to calculate expecta-
tions and variances. Specifically, we want to answer the questions:

1. “what is the expected value that X takes, regardless of Y?”

2. “what is the variance of X, regardless of Y?”

Of course, both are easily adapted for Y (regardless of X).
Let (X, Y) be two jointly distributed random variables with marginal

pmf/pdf fX(x) and fY(y). Then:

Discrete Continuous

E [X] =∑
x

x fX(x) =

+∞∫
−∞

x fX(x)dx = µX

Var [X] =∑
x

x2 fX(x)− µ2
X =

+∞∫
−∞

x2 fX(x)dx− µ2
X = σ2

X

E [Y] =∑
y

y fY(y) =

+∞∫
−∞

y fY(y)dy = µY

Var [Y] =∑
y

y2 fY(y)− µ2
Y =

+∞∫
−∞

y2 fY(y)dy− µ2
Y = σ2

Y

Applying the formulae: a chemical mixture

Last time we saw a chemical mixture problem with the vol-
umes of two materials. Here, X and Y are continuous random
variables between 0 and 1 representing the material volumes
with joint pdf fXY(x, y) = 2

5 (2x + 3y). Recall that last time we
calculated the marginal pdf for X and Y as fX(x) = 1

5 (4x + 3)
and fY(y) =

6y+2
5 .

1. What is the expectation and the variance of the volume of
the first material?

2. What is the expectation and the variance of the volume of
the second material?
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Applying the formulae: a chemical mixture

1. What is the expectation and the variance of the volume of
the first material?

Recall that fX(x) = 1
5 (4x + 3):

E [X] =

1∫
0

x · 1
5
(4x + 3) dx =

17
30

= 0.566 . . .

Var [X] =

1∫
0

x2 · 1
5
(4x + 3) dx− (E [X])2 =

71
900

= 0.0788 . . .

2. What is the expectation and the variance of the volume of
the second material?

Recall that fY(y) =
6y+2

5 :

E [Y] =
1∫

0

y · 6y + 2
5

dy = 0.6

Var [Y] =
1∫

0

y2 · 6y + 2
5

dy− (E [Y])2 =
11
150

= 0.073 . . .

Practice with the following joint distributions:

• Discrete: fXY(x, y) = x·y
18 , x = 1, 2, y = 1, 2, 3.

• Continuous: fXY(x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Conditional expectations and variances

Conditional means and variances can also be defined in the case of
two jointly distributed random variables X, Y. They would answer
the question: “what should I expect X to be if I know that Y is equal
to y?” Clearly, the same question can be asked for Y.

The conditional mean and variance of random variable X given
a value for random variable Y = y and of random variable Y given
X = x are:
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Discrete Continuous

E [X|y] =∑
x

x fX|y(x) =

+∞∫
−∞

x fX|y(x)dx = µX|y

Var [X|y] =∑
x

x2 fX|y(x)− µ2
X|y =

+∞∫
−∞

x2 fX|y(x)dx− µ2
X|y = σ2

X|y

E [Y|x] =∑
y

y fY|x(y) =

+∞∫
−∞

y fY|x(y)dy = µY|x

Var [Y|x] =∑
y

y2 fY|x(y)− µ2
Y|x =

+∞∫
−∞

y2 fY|x(y)dy− µ2
Y|x = σ2

Y|x

Back to the chemical mixture

Recall that we had calculated during the previous lecture that
fX|y(x) = 4x+6y

6y+2 .

What is the expectation and the variance of the volume of the
first material, given that the second material’s volume is equal
to 0.6?

We have:

E [X|y] =
1∫

0

x
4x + 6 · 0.6
6 · 0.6 + 2

dx = 0.5595

Var [X|y] =
1∫

0

x2 4x + 6 · 0.6
6 · 0.6 + 2

dx− 0.55952 = 0.0799.

Find the conditional distributions of the two joint distributions
below.

• Discrete: fXY(x, y) = x·y
18 , x = 1, 2, y = 1, 2, 3.

• Continuous: fXY(x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Then, find:

• For the first one (the discrete distribution):
E [X|Y = 2],Var [X|Y = 2].

• For the second one (the continuous distribution):
E [Y|X = 0.5],Var [Y|X = 0.5].
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Expectations of functions

Finally, as far as expectations are concerned, we take a look at the
expectation of a function. Let h(X, Y) be a function of two jointly
distributed random variables X, Y. Very similarly to what we did for
expectations of functions of single random variables, we get: 63 63 Recall that for random variable X and

function g(X), we have:

discrete : E [g(X)] = ∑
x

g(x)p(x)

continuous : E [g(X)] =

+∞∫
−∞

g(x) f (x)dx

discrete : E [h(X, Y)] = ∑
x

∑
y

h(x, y) fXY(x, y)

continuous : E [h(X, Y)] =
+∞∫
−∞

+∞∫
−∞

h(x, y) fXY(x, y)dxdy

Again with the chemical mixture

The chemical mixture’s quality is evaluated by function
h(X, Y) = 3X + 7Y. We note here that material 2 is prefer-
able to material 1, and hence the quality is severely favored
when material 2 has higher volume. The maximum possible
quality is equal to 10 (when both material volumes are equal
to 1): in general, the quality ranges from 0 to 10.

What is the expected mixture quality?

We can calculate this as:

E [h(X, Y)] =
1∫

0

1∫
0

(3x + 7y)
2
5
(2x + 3y) dxdy =

=

1∫
0

1
5

(
42y2 + 23y + 4

)
dy =

= 5.9.

Independence

Independence is a fundamental property of events and random vari-
ables. In the past 64 we have discussed independence for events: 64 See Lecture 3.

events A and B are independent if

P(A|B) = P(A) or P(A ∩ B) = P(A) · P(B).

This property proved very useful for calculating basic probabilities.
Now, we extend its definition to jointly distributed random variables.
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Definition 35 (Independence for random variables) Two random
variables X, Y are independent if any of the following statements hold:

1. fXY(x, y) = fX(x) fY(y), ∀x, y

2. fX|y(x) = fX(x), ∀x, y

3. fY|x(y) = fY(y), ∀x, y

4. P(X ∈ A, Y ∈ B) = P(X ∈ A) · P(Y ∈ B), ∀A, B

In English, the four statements say the same thing; but they do
it in different ways. The first one claims that two independent ran-
dom variables will see their joint pmf/pdf be equal to the product
of the individual marginal pmfs/pdfs. This is typically the easiest
way to show (or not) independence of two random variables. If we
find the marginal pmf/pdf of X and X and their product does not
always equate to their joint pmf/pdf, then the two variables are not
independent.

The second and the third statements are similar to the first def-
inition of independence of events. In essence, they claim that the
conditional pmf/pdf of one random variable given the other is equal
to the marginal pmf/pdf.

The last statement is interesting, but it needs to be shown for any
two sets of values A and B. It states that the probability of both X
belonging to set A and Y belonging to set B can be found through
the product of the individual probabilities. The last statement is very
similar to the first, but instead focuses on sets of values rather than
the pmf/pdf.

Discrete random variable independence

Consider two discrete random variables with joint pmf
fXY(x, y) = e−3 2x

x!·y! for x, y ≥ 0. Are random variables X
and Y independent?

This looks very intimidating, but we can use some well-
known facts from calculus to obtain the answer. Recall that
∞
∑

i=0

αi

i! = eα. This will be useful.

Now, to find the marginal pmfs:

1. fX(x) =
∞
∑

y=0
e−3 2x

x!·y! = e−3 2x

x! · e = e−2 2x

x! .

2. fY(y) =
∞
∑

x=0
e−3 2x

x!·y! = e−3 1
y! ·

∞
∑

x=0

2x

x! = e−3 1
y! · e2 = e−1 1

y! .

We then observe that fXY(x, y) = fX(x) · fY(y), showing inde-
pendence.
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We could have used statements 2 and 3 to show the same thing!

Discrete random variable independence

Consider two discrete random variables with joint pmf
fXY(x, y) = e−3 2x

x!·y! for x, y ≥ 0. Are random variables X
and Y independent?

We could first find the conditional pmfs:

1. fX|y(x) = fXY(x,y)
fY(y)

=
e−3 2x

x!·y!

e−1 1
y!

= e−2 2x

x! = fX(x).

2. fY|x(y) =
fXY(x,y)

fX(x) =
e−3 2x

x!·y!

e−2 2x
x!

= e−1 1
y! = fY(y).

We then observe that fX|y(x) = fX(x) and fY|x = fY(y), show-
ing independence again.

The last statement would prove a little tougher, as we would need
to show that it is true for any pair of sets of values. Let’s see an ex-
ample where independence does not hold.

Continuous random variable independence

Consider two continuous random variables with joint pdf
fXY(x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Are the random
variables independent?

Similarly to the previous example, let’s calculate the marginal
pdfs:

1. fX(x) =
1∫

y=0
(x + y) dy = xy + y2

2

∣∣∣1
0
= x + 1

2 .

2. Similarly, fY(y) = y + 1
2 .

We now note that fX(x) · fY(y) = x · y + 1
2 x + 1

2 y + 1
4 , which

does not reveal independence, as the product is not always
equal to x + y. At this point we may claim that the two events
are not independent. The same can be said using statements 2

and 3:

1. fX|y(x) = x+y
x+ 1

2
.

2. Similarly, fY|x(y) =
x+y
y+ 1

2
.

Again, these two are not necessarily equal to fX(x) or fY(y),
respectively.
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Last, let us consider statement 4: if we are able to find at least one
pair of values A, B such that P(X ∈ A, Y ∈ B) 6= P(X ∈ A) · P(Y ∈ B)
should be enough to disprove independence.

Continuous random variable independence

Consider two continuous random variables with joint pdf
fXY(x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Are the random
variables independent?

Consider A = [0, 0.25] and B = [0.5, 1]. We have:

P(X ∈ A, Y ∈ B) =
0.25∫
0

1∫
0.5

(x + y) dydx =

=

0.25∫
0

(
0.5x +

3
8

)
dx = 0.109375.

On the other hand:

1. P(X ∈ A) =
0.25∫
0

fX(x)dx =
0.25∫
0

(
x + 1

2

)
dx = 0.15625.

2. P(Y ∈ B) =
1∫

0.5
fY(y)dy =

1∫
0.5

(
y + 1

2

)
dy = 0.625.

We observe that P(X ∈ A) · P(Y ∈ B) = 0.15625 · 0.625 =

0.09765625 which is not equal to P(X ∈ A, Y ∈ B) = 0.109375.
Hence, the two random variables are not independent.

Alright, so we are able to tell if two random variables are indepen-
dent or not. Another useful metric though, would be to be able to tell
how dependent two random variables are.

Covariance

Definition 36 (Covariance) Covariance is a measure of the association
between two random variables. For two random variables X and Y, we
define covariance as:

σXY = Cov [X, Y] = E [(X− E [X]) · (Y− E [Y])] = E [XY]− E [X] · E [Y] .

Remember the definition of variance for a single random variable?
It was:

σ2
X = Var [X] = E

[
(X− E [X])2

]
= E

[
X2
]
− (E [X])2 .

This is very similar to the definition of covariance, extended to in-
clude jointly distributed random variables.
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A few observations that we may make based on the definition
follow:

1. If X ≥ E [X] whenever Y ≥ E [Y] and if X ≤ E [X] whenever
Y ≤ E [Y], then the covariance will be positive.

2. If X ≥ E [X] whenever Y ≤ E [Y] and if X ≤ E [X] whenever
Y ≥ E [Y], then the covariance will be negative.

3. Finally, and very importantly: two independent random vari-
ables X, Y will have σXY = Cov [X, Y] = 0. The inverse is not
necessarily true.

A small Florida example

In Gainesville, FL, summer days are classified as either sunny
or rainy. Whenever it is sunny, Floridians go to watch a local
baseball team; whenever it is rainy, they tend to forget their
umbrellas and they need to buy one. If it is rainy, profits sky-
rocket for an umbrella selling grocery store and they make
$4,500; at the same time, the local team only makes $1,000. If it
is sunny, the grocery store only makes $500; the team though
makes $2,500 from tickets. Summers are sunny in Florida
65% of the time, and rainy the remaining 35%. What is the
covariance of the two company profits?

Let U be the umbrella profits, and T the team profits. To help
us collect all data we may construct a small table as follows:

Sunny Rainy
Probability 0.65 0.35

Team (T) $2500 $1000

Umbrellas (U) $500 $4500

• First, calculate the expected profits:

E [U] = 0.65 · 500 + 0.35 · 4500 = $1900

E [T] = 0.65 · 2500 + 0.35 · 1000 = $1975.
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A small Florida example

• Now, on to calculating (X− E [X]) · (Y− E [Y]):

– when it is sunny:

(U − E [U]) · (T − E [T]) =

= (500− 1900) · (2500− 1975) = −805000.

– when it is rainy:

(U − E [U]) · (T − E [T]) =

= (4500− 1900) · (1000− 1975) = −2340000.

• Last, calculate the covariance:

Cov (U, T) = E [(U − E [U]) · (T − E [T]) = (4500− 1900)] =

= 0.65 · (−805000) + 0.35 · (−2340000) =

= −1342250.

Covariance is easier calculate as E [X ·Y]− E [X] · E [Y] when the
probabilities are given in joint pmf/pdf format.

Covariance for continuous random variables

Earlier, we saw an example of two jointly distributed continu-
ous random variables X and Y with pdf fXY(x, y) = x + y, 0 ≤
x ≤ 1, 0 ≤ y ≤ 1. We actually calculated their marginal pdfs:

• fX(x) = x + 1
2 .

• fY(y) = y + 1
2 .

We also found that these two are not independent. What is
their covariance?
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Covariance for continuous random variables

Recall that we can calculate the covariance of X and Y as
E [XY]− E [X] · E [Y].

• E [X] =
∫ 1

0 x
(

x + 1
2

)
dx = 7

12 .

• E [Y] =
∫ 1

0 y
(

y + 1
2

)
dy = 7

12 .

• Also: E [XY] =
∫ 1

0

∫ 1
0 xy (x + y) dydx = 1

3 .

Finally:

σXY =
1
3
− 7

12
· 7

12
= − 1

144
.

Correlation

The problem with covariance is that it is not normalized. A very big
covariance or a very small covariance do not necessarily imply the
actual level of dependence. This is why we introduce correlation,
a measure that directly relates its value to the magnitude of depen-
dence.

Definition 37 (Correlation) Correlation is a measure of the linear rela-
tionship between two random variables X and Y. It is calculated as:

ρXY =
Cov[X, Y]√

Var [X]
√

Var [Y]
=

σXY
σX · σY

.

By definition, −1 ≤ ρXY ≤ 1.

Notice that the numerator of correlation is the covariance itself,
normalized by the product of the individual standard deviations
(square roots of the variances). A few observations we can make
based on this definition.

1. When X and Y are independent then σXY = ρXY = 0.

2. ρXY = 1 implies that X and Y are fully positively correlated.

3. ρXY = −1 implies that X and Y are fully negatively correlated.
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Back to Florida

What is the correlation in the Florida example?

First, we calculate individual variances:

• Var [U] = 0.65 · (500− 1900)2 + 0.35 · (4500− 1900)2 =

3640000.

• Var [T] = 0.65 · (2500− 1975)2 + 0.35 · (1000− 1975)2 =

508471.25.

Since we already calculated Cov(U, T) = −1342250, we can
compute the correlation as:

ρUT =
−1342250√

3640000 ·
√

508471.25
= −0.9866.

Hence, as expected, the two profits are almost totally nega-
tively correlated!

Correlation for continuous random variables

Another example we saw earlier: fXY(x, y) = x + y, 0 ≤ x, y ≤
1 with:

• fX(x) = x + 1
2 .

• fY(y) = y + 1
2 .

• E [X] = 7
12 .

• E [Y] = 7
12 .

• σXY = − 1
144 .

What is the correlation?
First, we find the variances:

Var [X] =

1∫
0

x2 fX(x)dx− (E [X])2 =

1∫
0

x2
(

x +
1
2

)
dx−

(
7
12

)2
=

=
5

12
−
(

7
12

)2
=

11
144

.

We may similarly calculate Var [Y] = 11
144 , too. Finally:

ρXY =
− 1

144√
11

144 ·
√

11
144

= − 1
11

.



ie 300 138

When x and y restrict each other

This serves as more of a reminder from calculus. When taking the
integral of more than one variable at the same time, we need to be
very careful with the bounds we are using.

Let us see this with an example. Assume (X, Y) are two jointly
distributed continuous random variables with joint pdf equal to
fXY(x, y) = 3 · (x + y). Moreover, assume that X, Y ≥ 0 and (and this
is important!) X + Y ≤ 1.

Note how the value of random variable X affects the range of
values that Y is allowed to take; and vice versa. We need to be very
careful with how we proceed in this case. There are three things we
need to be able to do.

1. Calculate probability for both random variables at the same time
and expectations for a function of both random variables.

2. Calculate marginal distributions for one random variable at a
time.

3. Calculate probabilities, expectations, and variances for one ran-
dom variable (forgetting the other exists) and calculate condi-
tional probabilities, expectations, and variances for one random
variable setting the other equal to a value.

Let us specifically focus on these three items for the pdf provided:
fXY(x, y) = 3 · (x + y) for x, y ≥ 0, such that x + y ≤ 1.

Both at the same time

Typical questions:

• Verify that fXY(x, y) is a valid pdf.

• What is the probability that X ≤ 0.3 and Y > 0.5?

To answer these questions, we need to allow x and y to con-
sider all values they can get. For example, if x is allowed to
go from 0 to 1, then y is allowed to go from 0 to 1 − x. On the
other hand, if y is allowed to go from 0 to 1, then x is only
allowed to go from 0 to 1− y.

What we could do wrong: we could possibly allow both x
and y to go from 0 to 1, allowing x + y to potentially go higher
than 1, breaking the requirement.
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Both at the same time

Finally:

• Verify that fXY(x, y) is a valid pdf.

1∫
0

1−x∫
0

3 · (x + y) dydx =

1∫
0

3 ·
(

xy +
y2

2

)∣∣∣∣1−x

0
dx =

=

1∫
0

3 ·
(

1
2
− x2

2

)
dx =

(
3
2

x− 1
2

x3
)∣∣∣∣1

0
= 1,

or

1∫
0

1−y∫
0

3 · (x + y) dxdy =

1∫
0

3 ·
(

x2

2
+ yx

)∣∣∣∣1−y

0
dy =

=

1∫
0

3 ·
(
−y2

2
+

1
2

)
dy =

(
−1

2
y3 +

3
2

y
)∣∣∣∣1

0
= 1.

• What is the probability that X ≤ 0.3 and Y > 0.5?

0.3∫
0

1−x∫
0.5

3 · (x + y) dydx =

0.3∫
0

3 ·
(

xy +
y2

2

)∣∣∣∣1−x

0.5
dx =

=

0.3∫
0

(
1.125− 1.5x− 1.5x2

)
dx =

(
9x
8
− 3x2

4
− x3

2

)∣∣∣∣0.3

0
=

= 0.2565.

Let us now check the second case: one at a time.
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One at a time

Typical questions:

• Find the marginal distribution of X.

• Find the marginal distribution of Y.

To answer the questions, we need to either express y as a
function of x or express x as a function of y.

What we could do wrong: we could possibly allow both x
and y to go from 0 to 1, allowing x + y to potentially go higher
than 1, breaking the requirement.
Let’s see how we could go about solving this:

• Find the marginal distribution of X.

fX(x) =
1−x∫
0

3 · (x + y) dy =
3
2
− 3x2

2
.

• Find the marginal distribution of Y.

fY(y) =

1−y∫
0

3 · (x + y) dy =
3
2
− 3y2

2
.

The third case involves forgetting that one of the variables exist.

One alone

Typical questions:

• Find the probability that X ≤ 0.3.

• What is the expectation of Y?

To answer the questions, we simply use the bounds as given!

What we could do wrong: we could possibly try to restrict x
or y as a function of the other, when the other no longer exists
– as we do not care about it in the setup.
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One alone

• Find the probability that X ≤ 0.3.

0.3∫
0

fX(x)dx =

0.3∫
0

(
3
2
− 3x2

2

)
dx = 0.4365.

• What is the expectation of Y?

1∫
0

y fY(y)dy =

1∫
0

y
(

3
2
− 3y2

2

)
dx = 0.375.

Extension to more than 2 random variables

Everything we have discussed today can be generalized to more
than 2 random variables. 65 More specifically, for a multivariate 65 This will prove useful for Lecture 13.

jointly distributed random variable (X1, X2, . . . , Xn) (hence n random
variables), with joint pmf/pdf f (x1, x2, . . . , xn), we have expectations
and variances:

Discrete:

E [Xi] = ∑
x

xi fXi (xi) = µXi

Var [Xi] = ∑
x

(
xi − µXi

)2 fXi (xi) = σ2
Xi

Continuous:

E [Xi] =

+∞∫
−∞

xi fXi (xi) dxi = µXi

Var [Xi] =

+∞∫
−∞

(
xi − µXi

)2 fXi (xi) dxi = σ2
Xi

Similarly, for independence:

Definition 38 (Independence) Random variables X1, X2, . . . , Xn are
independent if and only if for all values of x1, x2, . . . , xn, we have that

fX1X2 ...Xn(x1, x2, . . . , xn) = fX1(x1) · fX2(x2) · · · fXn(xn).
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A 4-component machine

Recall the machine (from Lecture 11) that consists of four com-
ponents, whose lifetimes (in years) are jointly distributed with
the following pdf:

fX1X2X3X4(x1, x2, x3, x4) = 3 · e−2x1 e−x2 e−3x3 e−0.5x4 .

Are the random variables from the pdf in this example inde-
pendent?

First, we calculate all 4 marginal pdfs:

1. fX1 (x1) = 2e−2x1

2. fX2 (x2) = e−x2

3. fX3 (x3) = 3e−3x3

4. fX4 (x4) = 0.5e−0.5x4

Finally, we have that

fX1X2X3X4(x1, x2, x3, x4) = fX1 (x1) fX2 (x2) fX3 (x3) fX4 (x4) ,

so they are independent.

We finish today’s notes with the following very important result:
For a series of random variables, we have:

E

[
n

∑
i=1

aiXi

]
=

n

∑
i=1

aiE [Xi]

Var

[
n

∑
i=1

aiXi

]
=

n

∑
i=1

a2
i Var [Xi] +

n

∑
i=1

n

∑
j=1:i 6=j

aiaj · Cov
[
Xi, Xj

]
=

n

∑
i=1

a2
i Var [Xi] +

n

∑
i=1

∑
i<j

2aiaj · Cov
[
Xi, Xj

]
Since when we have independence, Cov

[
Xi, Xj

]
= 0 for all Xi, Xj,

then, for multiple independent random variables, we have: 66 66 We had already derived this result!
Check Lecture 9.

E

[
n

∑
i=1

aiXi

]
=

n

∑
i=1

aiE [Xi]

Var

[
n

∑
i=1

aiXi

]
=

n

∑
i=1

a2
i Var [Xi]
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13. Jointly distributed random
variables: some common
distributions

Learning objectives

After these lectures, we will be able to:

• Find the pmf/pdf of a function of a random variable.

• Recognize multinomial distributions.

• Calculate probabilities (including marginal and conditional
ones) for multinomially distributed random variables.

• Recognize bivariate normal distributions.

• Describe and explain bivariate normal distributions and
their correlations.

• Calculate probabilities (including marginal and conditional
ones) for bivariate normally distributed random variables.

Motivation: Success or failure? More like full success, or somewhat
success, or ...

In Lectures 5-6, we introduced a lot of discrete distributions. One of
the most fundamental ones is the binomial distribution. Its premise
is simple: perform an experiment n times and count the number of
successes, assuming the remainders are failures. This works pretty
well when we have two outcomes: for example, a patient may have
an infection or not, a student may pass a class or not, etc.

What happens when the number of outcomes is higher than 2?
What if a patient may have a severe infection, or a moderate infec-
tion, or no infection? What if a student can get an A, a B, a C, a D, or
fail a class?

Motivation: Normally distributed random variables with correla-
tion

We sometimes are aware that a specific random variable is normally
distributed. However, its exact parameters may depend (and in turn
may also affect) another normally distributed random variable. For
example, consider a Sunday night at HBO. A TV series starting at
10pm may expect a normally distributed share of viewers with a
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known mean and standard deviation. However, if the TV series
showing at 9pm has its grand finale, we may anticipate a higher
viewership for the 10pm show, too! This relationship needs to be
modeled somehow...

Distribution of a function

We have already discussed what we expect will happen for a function
of a random variable. 67 We repeat the definitions here for conve- 67 Recall Lecture 9 and the properties of

expectation section.nience:

Definition 39 (Expectation of a function of a random variable) Let
g(X) be a function of a random variable X. Then, the expectation of g(X) is
denoted by E [g(X)] and is equal to:

• for discrete random variable X with sample space S:

E [g(X)] = ∑
x∈S

g(x) · p(x).

• for continuous random variable X:

E [g(X)] =

+∞∫
−∞

g(x) · f (x)dx.

It is time we discuss how the function is distributed: rather than
addressing questions of expectation (“what should I expect the func-
tion value to be?”), we will be addressing questions of probability
(“what is the probability the function value is...”).

Some examples of why this would be useful:

• What is the probability my profits are higher than $2000 today?

– My profits depend on the number of customers, discrete ran-
dom variable X.

• What is the probability the circuit overheats?

– The heat of the circuit is a function of its current, continuous
random variable X.

• What is the probability the crop has high yield?

– The yield of a crop is a function of the location temperature,
continuous random variable X.

Formally, let Y = h(X) be a one-to-one transformation of a ran-
dom variable X to a random variable Y. The one-to-one transforma-
tion is important: it implies that solving y = h(x) provides us with a
unique solution. Assume that the solution is 68 68 Recall the definition of inverse func-

tions.
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x = h−1(y) = u(y).

Examples of inverses

• Y = X2 =⇒ x = u(y) =
√

y.

• Y = 2 ln x =⇒ x = ey/2.

Definition 40 (Distribution of a function) Let Y = h(X) be a one-
to-one function of random variable X to Y. X is distributed with pmf/pdf
fX(x). Then, the pmf/pdf of random variable Y = h(X) can be found using
the chain rule:

1. Discrete X: fY(y) = fX(u(y)).

2. Continuous X: fY(y) = fX(u(y)) · |u′(y)|,
where u′(y) is the derivative of function u(y).

Why is that true? Let’s take a look at the derivation for both discrete
and continuous random variables, starting with the discrete case.

Function of a discrete random variable. Consider a discrete random
variable X and a function Y = h(X). Let’s consider the probability
mass function for Y: it would be fY(y) = P(Y = y). More specifically,
we have:

fY(y) = P(Y = y) = P (h(X) = y) = P (X = u(y)) ,

where u(y) = h−1(y) is the inverse function. Now, that last term
(P (X = u(y))) is easy to calculate!

P (X = u(y)) = fX (u (y)) .

Function of a continuous random variable. Now, consider a continuous
random variable X and a function Y = h(X). We can’t immediately
deal with P(Y = y) like earlier, because Y is a continuous random
variable! Instead, consider the cumulative distribution function for Y:
it would be FY(y) = P(Y ≤ y). Like earlier, we do our transforma-
tion:

FY(y) = P(Y ≤ y) = P (h(X) ≤ y) = P (X ≤ u(y)) ,

where u(y) = h−1(y) is the inverse function. Now, that last term
(P (X ≤ u(y))) is again straightforward!

P (X ≤ u(y)) =

u(y)∫
−∞

fX (u (y)) .



ie 300 146

Recall that our goal is to derive the pdf of Y, that is fY(y). We also
remember how for continuous random variables we have that the pdf
is the derivative of the cdf, or in mathematical terms, fY(y) = (F(y))′.
Combining everything:

fY(y) = (F(y))′ =

 u(y)∫
−∞

fX (u (y))


′

= fX (u (y)) · u′ (y) .

Almost there: this works like a charm, if u′ (y) ≥ 0 (equivalently, if
u(y) is non-decreasing). When u′ (y) < 0 (i.e., when u(y) is decreas-
ing), then we have to take the absolute value, as our pdf can never be
negative. This sums it up:

fY(y) = fX(u(y)) · |u′(y)|.

Printer speed

A printer has speed that is equal to h(x) =
√

x+1
x+1 , where x is

the condition of the printer. The condition of the printer is a
continuous random variable distributed exponentially with
rate λ = 1. What is the probability the printer is faster than
0.5?

First of all, let’s see what we have:

• X is the condition of the printer, a random variable with
fX(x) = λ · e−λx and x ≥ 0.

• Y is the speed of the printer, a random variable which is
a function of X and has Y = h(x) =

√
x+1

x+1 . By definition
0 ≤ y ≤ 1.

• We may solve for u(y):

y =

√
x + 1

x + 1
=⇒ x = 1− 1

y2 =⇒ u(y) =
y2 − 1

y2 .

Based on the chain rule: fY(y) = e
− y2−1

y2 · 2
y3 . Finally, we have:

P(Y > 0.5) =
1∫

0.5

e
− y2−1

y2 · 2
y3 dy = 0.9502.
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The multinomial distribution

Flashback! Let’s review together the binomial distribution, one of
the first discrete probability distributions we studied together. We
had the following setup.

What if we perform n independent trials of the same experiment?
Each trial may result in a success (with probability p) or a failure
(with probability q = 1− p). Let X be the number of successes we
observe: then X is said to be binomially distributed with parameters
n and p. Some interesting things about the binomial distribution:

• pmf: P(X = x) = p(x) = (n
x)px (1− p)n−x, for 0 ≤ x ≤ n.

• expectation: E [X] = np.

• variance: Var [X] = np (1− p).

What if we tried to generalize this? We will still perform n inde-
pendent trials; however now each trial will result in one of k out-
comes (instead of just two). Each outcome appears with each own

probability pi. Clearly we need
k
∑

i=1
pi = 1. This is called the multino-

mial distribution. Formally:

Definition 41 (The multinomial distribution) Let Xi be the number
of times that outcome i appears in n independent trials. Each outcome i

appears with probability pi such that
k
∑

i=1
pi = 1. Then, (X1, X2, . . . , Xk)

is distributed following a multinomial distribution with parameters n and
pi, i = 1, . . . , k. The joint probability mass function is given by:

P(X1 = x1, X2 = x2, X3 = x3, . . . , Xk = xk) =
n!

x1!x2! . . . xk!
px1

1 px2
2 . . . pxk

k .

Note that
k
∑

i=1
xi = n.

Grades

According to the grade disparity website at UIUC, a student
registering for CS 101 gets an A 73% of the time, a B 17% of
the time, a C 6% of the time, a D 2% of the time, and an F the
remaining 2% of the time. In a section of the class, there are 20

students. What is the probability that:

10 students get an A and 10 students get a B?a)

everyone gets an A?b)

12 students get an A, 5 students get a B, 2 students get a
C, and 1 student gets a D?

c)

http://waf.cs.illinois.edu/discovery/grade_disparity_between_sections_at_uiuc/
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Grades

This is a multinomial distribution with n = 20, p1 = 0.73,
p2 = 0.17, p3 = 0.06, p4 = 0.02, p5 = 0.02 for A, B, C, D, and F,
respectively. Let X1, X2, X3, X4, X5 be the number of students
getting an A, B, C, D, F. Then, we have:

10 students get an A and 10 students get a B?

P(X1 = 10, X2 = 10, X3 = 0, X4 = 0, X5 = 0) =

=
20!

10!10!0!0!0!
0.73100.17100.0600.0200.020 =

= 0.00016.

a)

everyone gets an A?

P(X1 = 20, X2 = 0, X3 = 0, X4 = 0, X5 = 0) =

=
20!

20!0!0!0!0!
0.73200.1700.0600.0200.020 =

= 0.00185.

b)

12 students get an A, 5 students get a B, 2 students get a
C, and 1 student gets a D?

P(X1 = 12, X2 = 5, X3 = 2, X4 = 1, X5 = 0) =

=
20!

12!5!2!1!0!
0.73120.1750.0620.0210.020 =

= 0.00495.

c)

The marginal distribution

Let us derive the marginal distribution of fX1X2···Xk (x1, x2, . . . , xk) =

P(X1 = x1, X2 = x2, X3 = x3, . . . , Xk = xk) for the multinomial
distribution.

First of all, a little notation. Like we did in Lectures 11 and 12, the
marginal distribution of, say, Xi can be written as fXi (xi). Remember
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that Xi is the random variable capturing the number of outcomes i
we see in n tries.

Now, let outcome i be a “success”; otherwise, a “failure”. Does this
ring a bell? Also, remember that outcome i happens with probability
pi; everything else with probability 1− pi. Hence, Xi is the number
of successes we see in n independent tries. What is Xi distributed like
when we view it like this?

The marginal distribution of Xi is the binomial distribution:
i.e., every single one of the Xi is binomially distributed with
parameters n, pi.

Grades

For the example discussed earlier, what is the probability that:

10 students get an A?a)

at most 1 students fails?b)

Also, how many students are expected to get each grade?

The first one is binomially distributed with n = 20, p = 0.73.
The second one is binomially distributed with n = 20, p =

0.02. Overall, we have:

P(X1 = 10) = (20
10)0.73100.2710 = 0.01635.a)

P(X5 ≤ 1) = (20
0 )0.0200.9820 + (20

1 )0.0210.9819 = 0.6676 +

0.2725 = 0.9401.
b)

To answer the expectation question, if each outcome is bi-
nomially distributed with n = 20 and pi, the expectations
are:

A: 14.6a) B: 3.4b) C: 1.2c) D: 0.4d) F: 0.4e)

The conditional distribution

Now, let us consider the conditional distribution of the multinomial
distribution. Say that among all outcomes we already know that
Xj has happened xj times. This implies that there is no uncertainty
about xj of the n tries. Let’s keep that in mind.

Furthermore, if we were to remove these xj outcomes, what we are
left with is n− xj tries; however these tries do not have all k outcomes
happening, but instead only k− 1.
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Let us consider this with an example: if we have 20 students tak-
ing a class, and we know that 15 students ended up with an A, then
the stochastic nature of this distribution only affects the remaining 5

students – after we remove the students whose grade is known to be
an A.

Finally, in the remaining outcomes, we know that xj is missing.
However, we also know that if we sum the probabilities of all out-
comes we should be getting 1. In the case of the grades from before,
after we remove the As, we get a summation of probabilities equal to
p2 + p3 + p4 + p5 = 0.27 6= 1. To fix this issue, we renormalize the
remainder of the probabilities. Instead of pi, we now use qi =

pi
∑
` 6=j

p`
.

Summing up:

The conditional distribution of X1, X2, . . . , Xj−1, Xj+1, . . . , Xk

given Xj = xj is the multinomial distribution again but with
parameters n− xj, qi =

pi
∑
` 6=j

p`
.

Grades

Back to the example we have been using. We have just been
informed that 3 students failed. What is the probability that:

10 students get an A and 7 students get a B?a)

10 students get an A, 5 students get a B, and 2 students
get a C?

b)

Both are multinomial distributions with parameters n = 20 −
3 = 17 and q1 = p1

p1+p2+p3+p4
= 0.73

0.98 = 0.7449; q2 =
p2

p1+p2+p3+p4
= 0.17

0.98 = 0.1735; q3 = 0.0612; and q4 = 0.0204.
Then, we have:

P(X1 = 10, X2 = 7, X3 = 0, X4 = 0) =
17!

10!7!0!0! 0.7449100.173570.061200.02040 = 0.0048.
a)

P(X1 = 10, X2 = 5, X3 = 2, X4 = 0) =
17!

10!5!2!0! 0.7449100.173550.061220.02040 = 0.01265.
b)

The bivariate normal distribution

Similarly to what we did for the binomial and its extension to the
multinomial, we will also extend the normal distribution. What if, we
have two jointly distributed variables that are individually normally
distributed with their own means and variances? In essence, what if
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Figure 34: The bivariate normal distribution joint probability density function.
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we have the three-dimensional pdf portrayed in Figure 34?
Formally, we provide the definition that follows:

Definition 42 (Bivariate normal distribution) Consider two normally
distributed random variables X, Y with means µX , µY and variances σ2

X , σ2
Y.

That is, X ∼ N
(
µX , σ2

X
)

and Y ∼ N
(
µY, σ2

Y
)
. We also assume that the

two random variables are correlated with correlation ρXY.

Then, two random variables X and Y with the above parameters are jointly
distributed with a bivariate random distribution if:

fXY(x, y) =
1

2πσXσY

√
1− ρ2

XY

· e
−z

2(1−ρ2
XY) ,

where z = (x−µX)
2

σ2
X
− 2ρXY(x−µX)(y−µY)

σXσY
+ (y−µY)

2

σ2
Y

We observe that ρXY plays an important role. When ρXY = 0, we
have the simplified version of the bivariate random distribution as:

fXY(x, y) =
1

2πσXσY
· e
−
(
(x−µX)

2

2σ2
X

+
(y−µY)

2

σ2
Y

)
.

However, we know that ρXY = 0 implies that X and Y are indepen-
dent. And, for two independent random variables, we know that
their joint pdf is equal to the product of the individual pdfs. Let’s see
if that is the case here:
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Figure 35: The bivariate normal distribution and its contour plot. Here, we have that
ρXY = 0.
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Figure 36: The bivariate normal distribution and its contour plot. Here, we have that
ρXY > 0.
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fX(x) =
1√

2π · σX
e
− (x−µX )2

2σ2
X

fY(y) =
1√

2π · σY
e
− (y−µY )2

2σ2
Y

fX(x) · fY(y) =
1√

2π · σX
e
− (x−µX )2

2σ2
X · 1√

2π · σY
e
− (y−µY )2

2σ2
Y =

=
1

2πσXσY
· e
−
(
(x−µX)

2

2σ2
X

+
(y−µY)

2

σ2
Y

)
= fXY(x, y).

This independence is shown in Figure 35. What happens when
ρ > 0 or ρ < 0? What happens when ρ = 1 or ρ = −1?

When we have positive correlation, this implies that higher/lower
values of X will imply higher/lower values of Y and vice-versa (for Y
and X). This is showcased with the pdf and the contour in Figure 36,
which appears to be “positively” skewed.

On the other hand, if ρXY < 0, this means that higher/lower values
of X will lead to lower/higher values of Y and vice-versa (for Y and
X). This is exactly the opposite. This is again shown visually with the
pdf and the contour in Figure 37, which appears to be “negatively”
skewed.
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Figure 37: The bivariate normal distribution and its contour plot. Here, we have that
ρXY = 0.
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What happens when ρ = 1 or ρ = −1? Let’s leave this as food for

thought.

The marginal and the conditional distribution

Much like what we did for the multinomial distribution, we may also
derive the marginal and conditional distributions for the bivariate
normal distribution. More specifically, both the marginal and the
conditional distributions for the bivariate normal distribution are
normal distributions themselves!

Marginal pdf: X ∼ N
(

µX , σ2
X

)
Y ∼ N

(
µY, σ2

Y

)
Conditional pdf: X|Y = y ∼ N

(
µX|Y=y, σ2

X|Y=y

)
µX|Y=y = µX + ρXY

(
σX
σY

)
(y− µY)

σ2
X|Y=y = σ2

X

(
1− ρ2

XY

)
Y|X = x ∼ N

(
µY|X=x, σ2

Y|X=x

)
µY|X=x = µY + ρXY

(
σY
σX

)
(x− µX)

σ2
Y|X=x = σ2

Y

(
1− ρ2

XY

)
For the conditional pdf, the question from earlier comes back.

What if X and Y are independent? What if they are perfectly corre-
lated (ρXY = 1 or ρXY = −1)?

We finish this lecture with a big, comprehensive example that
combines information from Lectures 12 and 13, as well as Lecture 7.
Pay close attention to the derivations and calculations that follow!
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Bivariate normal distribution example

A class has two exams, both of which have grades that
are normally distributed with µ1 = 80, µ2 = 82.5 and
σ2

1 = 100, σ2
2 = 225. Finally the two exams are positively

correlated with ρ = 0.6. What is the probability that:

a random student scores over 75 in Exam 2?a)

a random student scores over 75 in Exam 2 given that
they scored an 85 in the first exam?

b)

the sum of the two exams of a random student is less
than or equal to 175?

c)

a random student did better on the second exam than
the first exam?

d)

Let’s get to it. Let X1 be the grade of the first exam, and X2

the grade of the second exam. Then:

We know that X2 ∼ N (82.5, 225). Hence:

• z = 75−82.5
15 = −0.5.

• P(X2 > 75) = 1− P(X2 ≤ 75) = 1−Φ(z) = Φ(−z) =
Φ(0.5) = 0.6915.

a)

We also know that X2|X1 ∼ N
(

µX2|X1
, σ2

X2|X1

)
. We cal-

culate:

• µX2|X1=85 = µX2 + ρX1X2

(
σX2
σX1

) (
85− µX1

)
= 82.5 +

0.6 · 15
10 · 5 = 87.

• σ2
X2|X1=85 = σ2

X2

(
1− ρ2

X1X2

)
= 225 · 0.64 = 144.

• z = 75−87
12 = −1.

• P(X2 > 75|X1 = 85) = 1 − P(X2 ≤ 75|X1 = 85) =

1−Φ(z) = Φ(−z) = Φ(1) = 0.8413.

Hence, knowing that the student did better than aver-
age in the first exam changes our perspective for their
probability to do well in the second exam, too.

b)
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Bivariate normal distribution example

The sum of two normally distributed random variables
is also normally distributed! Additionally, we have:

E

[
n

∑
i=1

aiXi

]
=

n

∑
i=1

aiE [Xi]

Var

[
n

∑
i=1

aiXi

]
=

n

∑
i=1

a2
i Var [Xi] +

n

∑
i=1

n

∑
j=1:i 6=j

aiajCov
[
Xi, Xj

]
=

n

∑
i=1

a2
i Var [Xi] + 2aiaj ·

n

∑
i=1

∑
i<j

Cov
[
Xi, Xj

]
In our case, we have two random variables, so:

E [X1 + X2] = E [X1] + E [X2] = 162.5

Var [X1 + X2] = Var [X1] + Var [X2] + 2Cov [X1, X2] =

= 325 + 2σ2
X1X2

.

To calculate σ2
X1X2

we use the definition of correlation
(see Lecture 12):

ρX1X2 =
σ2

X1X2

σX1 σX2

=⇒ 0.6 =
σ2

X1X2

10 · 15
= σ2

X1X2
= 90.

This leads to a final variance of Var [X1 + X2] = 505. Fi-
nally:

• X1 + X2 ∼ N (162.5, 505).

• z = 175−162.5√
505

= 0.56.

• P(X1 + X2 ≤ 175) = Φ(z) = Φ(0.56) = 0.7123.

c)

For this question, we want X2 > X1 =⇒ X2 − X1 > 0.
The difference of two normally distributed random
variables is—again—normally distributed! Its details:

E [X2 − X1] = E [X2]− E [X1] = 2.5

Var [X2 − X1] = Var [X1] + Var [X2]− 2Cov [X1, X2] = 125.

• X2 + X1 ∼ N (2.5, 125).

• z = 0−2.5√
125

= −0.22.

• P(X2 > X1) = P(X2 − X1 > 0) = 1− P(X2 − X1 ≤
0) = 1−Φ(z) = Φ(−z) = Φ(0.22) = 0.5871.

d)
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14. Descriptive statistics

Learning objectives

After these lectures, we will be able to:

• Differentiate between populations and samples.

• Given a sample, calculate the sample mean, variance, range,
and quartiles.

• Use graphical devices to present data, and more specifically:

– histograms;

– box plots;

– scatter plots;

– time series plots;

– Q-Q plots.

Motivation: Summarizing information

We live in the era of big data. The size of the data we collect is dou-
bling every 2 years (and this is a conservative estimate). When con-
fronted with so much information, one way to make sense of it is to
distill it in smaller, more manageable chunks. This is what we will be
doing in this lecture.

Probabilities and statistics

In Lecture 3, we defined probability using the words “with every
event, we associate a real number called probability to represent the
likelihood of that event happening.” We may use probability theory
to help us address questions such as:

• How likely is it that we get a 6 and a 1 if we roll two dice?

• What is the probability that a patient survives a disease?

On the other hand, we define statistics as the field including all
methods involved with collecting, describing, analyzing, interpreting
data. We use statistics to answer questions such as:

• Are two dice fair?

• What is a good estimate for the mortality rate of a disease?
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We show visually an example of the first question. Say we rolled
dice multiple times and reported the average number we obtained
for each series of rolls. We have two dice: a green and a blue one and
their results are show in Figures 39 and 38.

Figure 38: The average number obtained by rolling the blue dice.

Figure 39: The average number obtained by rolling the green dice.

We want to make a decision about whether the two dice are fair.
Let us plot both numbers together (see Figure 40). This makes it
easy to compare them and deduce that the two dice do not look very
similar. It appears the blue one is fair, with an average peak at 3.5
as expected, but the green one seems to favor smaller numbers, and
thus unfair.

Statistical methods

In the remainder of the semester, we will be dealing with statistical
methods. We differentiate methods in three very important cate-
gories:

1. Descriptive statistics: methods to describe and present data.
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Figure 40: Plotting both dice average numbers at the same time to make comparisons
easier.

2. Inferential statistics: methods to use observations in a smaller
sample to draw conclusions for the larger population.

3. Model building: methods to build models to predict future data
based on past observations.

The airline industry

The airline industry uses all three categories of statistical
methods to help them guide decision-making based on avail-
able data. More specifically, example questions they use statis-
tical methods include:

1. Descriptive statistics. Present the average delay for each
route: this could be used to identify routes that are on aver-
age very late to depart from their origin or to arrive at their
destination.

2. Inferential statistics. Select a subset of the routes to per-
form some prescriptive action: if the routes do indeed de-
crease their delays, can we claim that the action will work
for all routes?

3. Model building. Build a model to predict delays: this is
useful for identifying routes that are prone to be delayed
and reroute passengers with connections that would be
missed.

All three will be seen in subsequent lectures. However, for now,
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we will focus on descriptive statistics alone.

Descriptive statistics

This is the main part of today’s lecture. We will specifically see two
types of descriptive statistics: numerical and graphical.

What we will focus on in this lecture and in the worksheet is de-
scriptive statistics. More specifically:

1. Numerical summaries of data.

• sample mean, mode, median.

• sample variance, standard deviation.

• percentiles, quartiles, ranges.

2. Graphical displays of data.

• Dot diagrams.

• Histograms.

• Stem-and-leaf diagrams.

• Box plots.

• Scatter diagrams.

• Time series plots.

• Q-Q plots.

Populations and samples

With the term population we refer to all possible observations we
can collect. For example, a population could be the list of heights
of every person in the world; or the SAT scores of every student
in Illinois; or the time delays in all flights of a specific airline. The
number of observations can grow to be very, very big and impractical
to work with.

With the term random sample we refer to a subset of the obser-
vations selected from a population. For example, a sample could be
the list of heights of 12 randomly selected people from our class; or
the SAT scores of every student from a specific high school in Illinois;
or the time delays in flights leaving ORD of a specific airline. This
number of observations in the sample is expected to be significantly
smaller than the population size, and hence, manageable to work
with.
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Formal definitions

More formally, assume a population X where each of its ele-
ment is distributed with the same distribution (assume mean
µ and variance σ2). Then, a random sample is a set of ran-
domly selected elements from X referred to as X1, X2, . . . , Xn.
Each Xi is independently selected, and comes from the same
population X with mean µ and variance σ2. Hence, we have:

• E [Xi] = E [X] = µ.

• Var [Xi] = Var [X] = σ2.

Numerical summaries of data

Sample mode

Definition 43 (Sample mode) Given n observations x1, x2, . . . , xn in
a random sample, the sample mode is the value(s) xi that appears most
times.

Small example

Assume that the heights of the 5 people in the leadership team
of a student chapter are: 60, 67, 72, 63, 60. Then, the sample
mode is 60 as it appears twice.

Sample mean

Definition 44 (Sample mean/average) Given n observations x1, x2, . . . , xn

in a random sample, the sample mean or average is calculated as

x =
x1 + x2 + . . . + xn

n
=

1
n

n

∑
i=1

xi.

Small example

Assume that the heights of the 5 people in the leadership team
of a student chapter are: 60, 67, 72, 63, 60. Then, the sample
mean is

1
5
(60 + 67 + 72 + 63 + 60) = 64.4.

Sample variance
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Definition 45 (Sample variance) Given n observations x1, x2, . . . , xn in
a random sample, the sample variance is calculated as

s2 =
(x1 − x)2 + (x2 − x)2 + . . . + (xn − x)2

n− 1
=

=
1

n− 1

n

∑
i=1

(xi − x)2 =

n
∑

i=1
x2

i − nx2

n− 1
.

The sample standard deviation is denoted by s =
√

s2. Furthermore, n− 1
is also called the degrees of freedom of the sample.

Small example

Assume that the heights of the 5 people in the leadership team
of a student chapter are: 60, 67, 72, 63, 60 with x = 64.4. Then,
the sample variance is

1
4

(
4.42 + 2.72 + 7.82 + 1.42 + 4.42

)
=

108.81
4

= 27.2025.

Population mean and variance

Percentiles and quartiles

Definition 46 (Percentile) The number below which we can approxi-
mately find p% of the data in the sample is called the p-percentile.

Based on the definition, we may calculate any p-percentile as fol-
lows:

1. Sort the data in increasing order.

2. Calculate k = (n + 1) · p
100 .

3. The element at the k-th position in the sorted data is the p per-
centile.

Note that the calculation of (n + 1)p/100 may well be fractional
(i.e., the number has us search between two values). When this is the
case, then we interpolate. 69 69 For example, say we calculate k = 7.4.

Then the percentile is between the 7th
and the 8th value. However, due to the
.4 decimal part we would interpolate as:
0.6 · x7 + 0.4 · x8.
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Bigger example

Assume the heights of 9 people are 62, 64, 67, 58, 70, 61, 67, 65,
64. What is the 30% and the 67% percentile?

The ordered heights are 58, 61, 62, 64, 64, 65, 67, 67, 70.

30% percentile: Plugging in the formula (n+1)p
100 = 10·30

100 = 3.
The 3rd value is 62.

67% percentile: Plugging in the formula (n+1)p
100 = 10·67

100 =

6.7. The 6th value is 65 and the 7th is 67: interpolating, we
get: 0.3 · 65 + 0.7 · 67 = 66.4.

A special type of percentiles are the quartiles. They separate the
data in four parts, each of which contains 25% of the data. Specifi-
cally, we have three quartiles, typically denoted as Q1, Q2, Q3:

• Q1: Splits the lower 25% from the rest of the data.

• Q2: Splits the lower 50% from the rest of the data.

• Q3: Splits the lower 75% from the rest of the data.

Q2 is also called the median.

Definition 47 (Sample median) Given n observations x1, x2, . . . , xn in
a random sample, the sample median is the value below which (and above
which) we find 50% of the observations. It is denoted by x̃ or Q2 (the second
quartile).

Bigger example

Earlier, we got the ordered 9 heights to be 58, 61, 62, 64, 64, 65,
67, 67, 70.

Q1: (n+1)p
100 = 10·25

100 = 2.5. So Q1 = 61.5.

Q2: (n+1)p
100 = 10·50

100 = 5 =⇒ Q2 = x̃ = 64.

Q3: (n+1)p
100 = 10·75

100 = 7.5 =⇒ Q3 = 67.

Ranges and outliers

Definition 48 (Range) The range of values in a sample or population is
calculated as the difference of the maximum and the minimum value in the
sample or population: R = max {xi} −min {xi}.

By definition, the range of a population will always be greater than
or equal to the range of a sample.
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Definition 49 (Interquartile range) The interquartile range is calculated
as the difference of the third to the first quartile: IQR = Q3−Q1.

The IQR is in essence a measure of range but focusing on the
middle part of the data considered.

Definition 50 (Outliers) An outlier is a value that affects the range of our
data but leaves the IQR unaffected. Specifically, we say that a data point is
an outlier if it lies outside [Q1− 1.5IQR, Q3 + 1.5IQR].

Describing aluminum-lithium specimens

A company has collected the following data for compressive
strength (psi) of aluminum-lithium specimens: 105, 221, 183,
186, 121, 181, 180, 143, 97, 154, 153, 174, 120, 168, 167, 141, 245,
228, 174, 199, 181, 158, 176, 110, 163, 131, 154, 115, 160, 208,
158, 133, 207, 180, 190, 193, 194, 133, 156, 123, 134, 178, 76, 167,
184, 135, 229, 146, 218, 157, 101, 171, 165, 172, 158, 169, 199,
151, 142, 163, 145, 171, 148, 158, 160, 175, 149, 87, 160, 237, 150,
135, 196, 201, 200, 176, 150, 170, 118, 149.

What are the outliers?

We would first have to sort the data in increasing order, and
then calculate Q1, Q3. Doing so gives us Q3 = 181, Q1 = 144.5
and IQR = 36.5. We may also calculate the minimum and
maximum values as 76 and 245, respectively, leading to a
range of 169.

Potential outliers would lie outside the range of
[Q1− 1.5IQR, Q3 + 1.5IQR] = [89.75, 235.75]. The only values
satisfying this are: 245, 76, 87, 237.

Graphical devices of data

In this section, we discuss some visual tools to represent data.

Dot diagrams Dot diagrams (as the name suggests) asks to place a
dot on top of each data point. The mode and median are revealed
pretty easily in a dot diagram: simply find the tallest set of dots for
the mode, and the value below which 50% of the dots lie for the
median. See Figure 41 for an example.

In the example, the mode was 1 hour, and the median is at 13

“dots” (for a total of 25 dots)70 and is found at 3 hours. 70 Recall the median calculation is
(n + 1) 50/100 = 13It becomes clear from the way this is constructed that the dot

diagram is only useful for smaller sized datasets.
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Figure 41: An example of a dot diagram representing the amount of time each student
spent on Homework assignment 1 (self-reported) during Fall 2019, rounded to the
closest integer.

Stem-and-leaf plots A stem-and-leaf diagram only makes sense when
all of the data consists of at least two digits. It is a striking visual tool
to showcase frequency. The way it is constructed is simple: we pick a
series of stems (the first, more important digits) and leaves (the least
important digit). For example, the number 311, could be represented
as a stem of 31 and a leaf of 1. The leaves are sorted in increasing
order. An example is presented in Figure 42.

Figure 42: An example of a stem-and-leaf diagram representing the data from the
aluminum-lithium specimens.

Alongside the diagram, we typically present frequency (the cu-
mulative number of observations up to and including a stem). In
the example, we see that up to and including the stem of 10 we have
five observations; on the other hand up to and including the stem of
18 we have 64 observations. This can be used to measure individual
frequency: for example the stem 17 has 10 observations – we can tell
because up to and including 17 we have 57 observations, whereas up
to and including 16 we have 47 observations.
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Scatter plots Scatter diagrams are particularly useful when we sus-
pect that the data has some hidden relationship, either positive or
negative. For example, what can you say about the following scatter
plot of Figure 43 showing data points of activity and obesity in the
US?

Figure 43: A scatter plot of the relationship between the rate of obesity cases and the
average physical activity levels at each state.

Scatter plots may reveal a positive or negative relationship. They
may also show that there seems to be no relationship between two
variables. We reveal small, simple examples of each of the three cases
in Figure 44.

Time series plots A time series plot is useful when the data are
recorded in the order of time. For example, if we are given data that
presents some number that changes every month, then it may be suit-
able to present in a plot where the x axis represents time, and the y
axis the number of interest. Below we present two examples: from
the city of Chicago for the number of reported crimes per month
in Figure 45 (notice the huge drop every February, due to the fact
that February has fewer days!) and from Champaign county on the
number of COVID-19 cases every week in Figure 46.
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Figure 44: Positive relationship (left), negative relationship (right), and no discernible
relationship (below).

Figure 45: Reported crimes in Chicago by date. Data obtained by https://data.

cityofchicago.org on October 8, 2019.

Figure 46: Number of cases (onset of symptoms) per week in Champaign county. Data
obtained by http:c-uphd.org on August 14, 2020.

https://data.cityofchicago.org
https://data.cityofchicago.org
http:c-uphd.org
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Box plots Box plots, sometimes also called box-and-whisker plots,
are graphical devices built to reveal multiple interesting properties at
once. Seeing a box plot reveals:

1. the center of the data;

2. the spread of the data;

3. the shape of the data;

4. and the outliers in the data.

Seeing a box plot immediately shows the min value, the first quartile
Q1, the median Q2, the third quartile Q3, the interquartile range
IQR, and the max value of the data.

Figure 47 shows all the inner workings of constructing a box plot.

Figure 47: A box plot. To construct it, we create a rectangle ranging from Q1 to Q3.
We separate it into two parts drawing a line where the median Q2 is. Then, we extend
two whiskers on the two sides all the way to the smallest and biggest value respec-
tively so long as that value is less than 1.5× IQR away from the quartile. Finally, we
note every point outside the whiskers as outliers with a “o”.

Q2

Q1 Q3

IQR1.5*IQR 1.5*IQR

o

Outlier

o

Outlier

Whisker extends to the smallest data point

within [Q1− 1.5× IQR, Q1]

Whisker extends to the biggest data point

within [Q3, Q3 + 1.5× IQR]

It is useful to compare box plots one next to the other. For exam-
ple, see the box plot of Figure 48 containing information about the
quality obtained in three different plants. We observe that the blue
plant provides us with the highest quality index. The green one has
better median quality index than the red one, but the red one has a
narrower range of possible quality indices, making it more consistent.
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Figure 48: The quality index obtained in three different plants.

30 40 50 60 70 80 90 100 110

Data

A small example

We are given a set of data points, and we have calculated that
Q1 = 10, Q2 = 16, Q3 = 18. The points outside the [Q1, Q3]
range are 3, 7, 8, 8, 9 from below and 19, 23, 33, and 35 from
above. Draw the boxplot.

0 5 10 15 20 25 30 35 40

Data

Histograms A histogram is a graphical construct that presents data
by placing them in bins.

The bins could be numbers (in the case of Figure 49, the number of
friends on fb.

The bins could represent age ranges (in the case of Figure 50, the
age of Florida residents).

The bins could even represent letter grades (as you are probably
used to seeing letter grade distributions after exams as in Figure 51!).

Histograms possess three important characteristics:

1. modality.

2. heavy/light tailedness.

3. skewness.

The modality of a histogram is concerned with the number of
“noticeable peaks” in the data. Recall that a single peak would imply
a single mode (most frequent value, or in a histogram’s case most
frequent range of values). A histogram can then be:

• unimodal (single mode).

• bimodal (two modes).

• multimodal (multiple modes).
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Figure 49: The number of friends that a person has on Facebook.

Figure 50: The age of Florida residents in 2018.
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Figure 51: The final grade distribution in an IE course over the last four years.

• uniform (no mode).

We present four examples to showcase each of the four types in
Figures 52–55.

Figure 52: Unimodal: we note one observable peak at the “B” letter grade.

Figure 53: Bimodal: we note one observable peak at the “5-17” and the “45-65” age
ranges.

A second histogram characteristic is whether it possesses a heavy
or light tail. We say that a tail is “heavy” if it is “heavier” than the
exponential distribution.
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Figure 54: Multimodal: we can find four noticeable peaks here when observing the
height of NBA players (in inches, all heights from the 2013 league).

Figure 55: Uniform: when we roll multiple dice and report the outcomes.

Figure 56: What heavier than an exponential distribution means. Here both the green
and the red functions are located higher than the exponential for bigger values of x, so
they would both be characterized as heavy-tailed.
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Let’s turn our focus back to histograms. Here are two examples of
how a heavy-tailed a light-tailed histogram would look like:

Heavy-tailed: the household income. Note how there is a heavy
tail for some very high incomes.

a)

Light-tailed: heights of a sample of the population in Denmark
(restricted to people who self-identify as male).

b)

Why should we care about this characteristic? Well, say we are
devising a policy and we need to figure out whether the same policy
should apply to all. When the feature we are looking at has a heavy
tail, this might have us thinking twice before having the same policy,
because many observations would lie far from the average or the
bulk of our observations.

Finally, we discuss skewness, the third histogram characteristic.
In essence, we want to answer the question of whether the histogram
is symmetric or not. And, if not, is it right-skewed? Or left-skewed?
How do we figure this out?

• If the tail is to the left, then it is left-skewed or has negative skew-
ness.

• If the tail is to the right, then it is right-skewed or has positive
skewness.

• Otherwise, it is symmetric.
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Figure 57: An example of a left-skewed histogram, as the tail is to the left.

Figure 58: An example of a right-skewed histogram, as the tail is to the right.

Figure 59: An example of a symmetric histogram with no discernible tail.
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In all figures, x represents the average, and x̃ the median. Note
that this helps us provide another definition for skewness. If the
median is:

• to the right of the average, then the histogram is left-skewed.

• to the left of the average, then the histogram is right-skewed.

• in a similar location to the average, the the histogram is symmet-
ric.

Finally, we address another important aspect. It is true that the
same data can be presented in many, many different ways using
histograms:

• Here we show every distinct letter grade that a student may

receive:

• Whereas here we show only the main letter grades (for example,
no “B+” or “B-”, instead we only have a “B” grade):

The more bins we introduce, the less width each bin has, and the
more the shape resembles the actual distribution of the data (for
larger amounts of data).
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Q-Q plots Q stands for quantile. A Q-Q plot is useful when compar-
ing two probability distributions or two samples. It is more “pow-
erful” (as in easier to interpret) than comparing two histograms. It
may also be used for “goodness of fit” to check whether our data
follows a specific distribution. The most well-known Q-Q plot is the
normal Q-Q plot that helps verify whether our data follows a normal
distribution or not.

Before we introduce how Q-Q plots are built and read, we need to
discuss quantile functions. What are quantile functions? As we saw
earlier in the lecture, for any sample we have:

• p percentile: p% of the observations are below that value.

• Q1: first quartile, p = 25.

• Q2: second quartile, p = 50, also known as the median.

• Q3: third quartile, p = 75.

Now, for any random variable X with CDF F(x), we define the
quantile function as:

Q(p) = inf {x : F(x) ≤ p} , for 0 ≤ p ≤ 1.

In English: look for the smallest value of x such that F(x) is smaller
than or equal to the given probability p. An interesting note: Q(p) =
F−1(x).

So how do we build a Q-Q plot? We have a sample of n observa-
tions, and we have a theoretical distribution we believe our sample
follows (e.g., exponential, normal, etc.). With this information at
hand, we follow the procedure:

1. First, identify some quantile levels of interest: 0 < p1 < p2 < . . . <
pn.

• Typically, we choose pi =
i

n+1 , for n observations.

• We could also choose pi =
i−0.5

n .

2. Then, we compute the sample’s quantiles. Let them be X1, X2, . . . , Xn.

3. Now, we compute the theoretical quantiles, based on the F(x)
selected. Let them be F−1(p1), F−1(p2), . . ., F−1(pn).

4. Finally, plot the sample quantiles against the theoretical quantiles
in the same plot. See Figure 60 for an example.
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Figure 60: An example of a Q-Q plot. Here the x axis shows the theoretical quantiles
and the y axis the sample quantiles.

Figure 61: Here we assumed the sample follows a normal distribution so we plotted
the sample’s quantiles to the normal quantiles. We get a straight line, meaning our
data comes indeed from the normal distribution!
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After we have a Q-Q plot, how do we use it? How do we read it?
Well, the nice thing is that if indeed the sample follows that (theo-
rized) distribution, then the Q-Q plot will look like a straight (45

◦)
line, as in Figure 63!

We can also tell whether the distribution is left or right skewed.

Left-skewed:a) Right-skewed:b)

Finally, we can tell if it light- or heavy-tailed.

Light-tailed:a) Heavy-tailed:b)
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Constructing a Q-Q plot

Assume we collected the following observations from some
population: 3.77, 4.25, 4.50, 5.19, 5.89, 5.79, 6.31, 6.79, 7.19. Do
the observations seem to come from a normal distribution?
Let us construct a Q-Q plot to prove or disprove this.

We have n = 9 observations, so we can get p1 = 10%, p2 =

20%, . . . , p9 = 90%. Find the z-values corresponding to the
9 percentage: -1.28, -0.84, -0.52, -0.25, 0, 0.25, 0.52, 0.84, 1.28.
Finally, we plot them and see if they appear to form a 45◦ line
or not.
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15-16. Point estimators
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Learning objectives

After these lectures, we will be able to:

• Describe point estimation.

• Explain the difference between bias and variance of a point
estimator.

• Evaluate the bias, variance, mean square error of a point
estimator.

• Compare two point estimators and pick the better one.

Motivation: Inferring parameters

In most applications, we have a good enough idea on the distribution
that we need to follow. When a company makes vehicles, we could
pick some of them to check for their quality and count how many are
of high quality: this can be modeled as a binomial or a hypergeomet-
ric distribution. When a student takes an exam, they will expect to do
similarly to their previous exams plus or minus some points if they
prepare in a similar manner: their score can be modeled as a normal
distribution.

However, one of the questions we need to answer is: what are the
parameters of the distributions? What is the mean and variance of
that normal distribution? What is p in a binomial distribution? So
far, we have been given this as part of our data. What happens when
we are given data and need to infer their values, based on real-life
observations?

Motivation: Predicting an election

Before an election takes place, we see many polls. Some of them
appear to better resemble the final result (after the election); others
fail to capture reality. Given this data based on a sample of the whole
population, what can we say about the election? What can we say
about the probabilities of one candidate versus another?

Statistical inference

Statistical inference takes us from the sample to the whole. For
example, consider any of the next scenarios:

• We interviewed 50 people about the next election. What do the
results imply for the general election?
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• We picked a sample of 10 cars and performed a crash test. What
do the observations imply for the whole production line?

• We collected exit interview data from 100 alumni. What do their
answers imply for the starting salary of our alumni?

Right away, we can make some intuitive observations:

1. Checking a sample, rather than the whole, saves us time and
effort.

2. Checking a sample, rather than the whole, comes with a loss of
information.

3. Checking a sample, rather than the whole, we want to recreate the
whole.

Statistical inference theme

The general theme for this part of the class can be summarized pretty
well in the following Figure 62.

Population
X ∼ f (x, θ)

Sample
X1, X2, . . . , Xn

Statistics

?

Figure 62: The theme of statistical inference. We collect a sample of the whole pop-
ulation that we analyze to get some statistic, which we then use to infer information
about the population.

Sample averages and variances

Assume a large population X: you decide to collect only 5

random variables X1, X2, X3, X4, X5. Then, we may calculate
the sample average X1+X2+X3+X4+X5

5 and the sample variance
and use those in lieu of the population mean (unknown) and
the population variance (unknown).

For example, say I want to figure out the average height of
every Chicago resident, I could (i) travel to Chicago, (ii) ask
10 people about their height, and (iii) calculate the average of
these 10 people. Is this the true average?
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Statistics

We proceed with some preliminaries that will be used throughout the
next few classes.

Definition 51 (Statistic) A statistic is any value obtained by random data.

Well, this is not very useful. The only recurring theme here is
random data. In essence, the definition claims that any value that is
different for differently obtained data can be considered a statistic!

Height statistics

Assume that the heights of the 5 people in the leadership team
of a student chapter are: 60, 67, 72, 63, 60. Then, the height of
the second person picked (67) is a statistic. The average height
is another statistic. Finally, getting the height of the first per-
son and multiplying it by 3 and adding to it the height of the
last person is also a statistic.

Clearly, some statistics are more useful than others. For example,
in our earlier discussion the average is more useful than the last
statistic. To verify, answer the following questions.

Are the following statistics? True or False.

• The sample variance.

Truea) Falseb)

• The value of the first element of a sample.

Truea) Falseb)

• The value of the first element of a sample minus 3.

Truea) Falseb)

Some basic properties of statistics:

1. Statistics depend on the sample selected: the value a statistic
gets will be different depending on the sample selected. If I se-
lect 5 students in the class and report their average exam score (a
statistic), it will be different depending on the 5 students selected.

2. Statistics are functions of the sample selected: we can use the
same “formula” or follow the same “approach” to estimate the
value of a statistic given a sample, no matter the sample.
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3. Statistics are random variables: statistics are distributed as ran-
dom variables. Certain values may appear more often than others,
we can define expectations for statistics, etc.

Polling with few people

For a poll, we are asked to find 10 people and ask them a
question on a Likert scale (that is from 1 to 5). Then, we take
their answers and add them up: we say that if the score is
≥ 30 then the people agree with that statement on average.

Unfortunately you were only able to find 5 people, who pro-
vided the following answers Xi: 2, 1, 3, 3, 3. You then decide
to use Y = 2 ·∑ Xi as the statistic you report back. In this case,
you’d report Y = 2 · (2 + 1 + 3 + 3 + 3) = 24.

• Is this a statistic? Yes.

• Does it depend on the sample selected? Yes. Change the
sample asked to obtain a different number.

• Is it a function of the sample selected? Yes. We always
add up the answers and multiply by 2.

• Is this a random variable? Yes. We can calculate an expec-
tation and a variance, and we can estimate probabilities!

Sampling distribution

So, if a statistic is a random variable, what is its distribution? The
distribution of a statistic, called the sampling distribution depends
on three things:

1. The distribution of the whole population. Of course we should
expect that the distribution of the population will be reflected
when looking at a sample!

2. The size of the sample. Once again, it should make sense that the
bigger the sample we pick the more accurately we will reflect the
population distribution.

3. The way the sample was selected. We will not devote a lot of time
in this: but, picking a sample in a non-random way will affect the
distribution we see.

Confused? Don’t be! We have done that already..
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Back to the normal distribution

Assume you have a population where each individual is dis-
tributed following a normal distribution with mean µ and
variance σ2. You pick, at random, a set of n individuals Xi.
What is the average distributed as?

We have seen that the average Y = ∑ Xi
n is also normally dis-

tributed with the same mean µ and variance σ2

n . This normal
distribution N (µ, σ2/n) is the sampling distribution.

Point estimators

Let’s put everything formally. Let X be a population distributed with
some pdf f (x, θ), where θ is some unknown parameter. By the way,
you may treat θ as a vector of multiple parameters. 71 71 Recall that every distribution we have

seen had some parameters that were
required to define it. For example, the
binomial distribution needed n > 0
and p ≥ 0, whereas the exponential
distribution or the Poisson distribution
needed λ > 0.

Furthermore, let X1, X2, . . . , Xn be a series of random elements
picked from the population. They form the sample of size n that was
selected. By definition, seeing as X1, X2, . . . , Xn all come from the
same place, they are identically distributed and independent random
variables.

Definition 52 (Point estimators) We define point estimator(s) Θ̂ as a
statistic that is used to approximate the unknown parameter(s) θ.

By definition, Θ̂ is a function of the sample selected (X1, X2, . . . , Xn),
hence we may say that Θ̂ is a random variable depending on the
sample (Θ̂ = h(X1, X2, . . . , Xn), where h(·) is some function).

Of course, once we have picked a sample then Θ̂ can be calculated
and assigned a value. This value is called the point estimate θ̂. To
summarize, Θ̂ is the general statistic used (e.g., the point estimator
can be found if we take the average and add 2) whereas θ̂ is the value
the estimator receives for a specific sample (e.g., for our sample, the
average is 7 so the point estimate is 9). To summarize, Θ̂ is typically a
“formula” or an “expression”, whereas θ̂ is an actual number.

Common point estimators

Such a topic (statistical inference) is so broad and useful that we def-
initely already have some estimators that are typically used. Are you
looking for the (unknown) mean of a population? Collect a sample
and report its average. Are you looking for the (unknown) popula-
tion variance? Collect a sample and report its sample variance. We
differentiate between single and two populations.
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Single population. For a single population:

Parameters Point estimators
Population mean µ Sample average Θ̂ = x

Population variance σ2 Sample variance Θ̂ = s2

Population proportion p Sample proportion n̂
n

Single population proportions

Assume a population that we want to ask whether they agree
or disagree with a new policy. Should we enact it? If it is diffi-
cult or impossible to collect feedback from all, we may pick a
sample and ask them if they agree or not. Let n be the sample
size and n̂ be the number of people who agree.

Finally, we may report that n̂
n is the point estimator for the

unknown proportion.

Two populations. For two populations:

Parameters Point estimators
Difference in population means Difference in sample averages

µ1 − µ2 Θ̂ = x1 − x2

Ratio in population variances Ratio in sample variance
σ2

1
σ2

2

s2
1

s2
2

Difference in population proportions Difference in sample proportions
p1 − p2 Θ̂ = n̂1

n1
− n̂2

n2

Two population proportions

Assume a population that we want to ask whether they agree
or disagree with a new policy. However, we are also aware
of the existence of two populations: say, for example, people
who make more that $100,000 and people who make less. Is
the policy more preferred to people of one category versus the
other? Let n1 be the sample size from the first population and
n̂1 be the number of people who agree from that population.
Similarly, define n2 and n̂2.

Finally, we may report that the difference between the two
proportions is n̂1

n1
− n̂2

n2
as the point estimator for the unknown

proportion difference.

Before moving to the next section, take a moment to summarize
what we have seen. We have a population distributed with some
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probability density function ( f (x)) but with unknown parameters
θ. We then come up with a plan: select a sample, and calculate a
point estimator Θ̂. For a given sample, you obtain a point estimate
(actual value) θ̂. You use that to estimate the unknown parameter.
Additionally, recall that Θ̂ is a random variable, so it should come as
no surprise that we can analyze it as such!

What makes a good estimator?

Every estimator has two main items we want to evaluate it by: accu-
racy and precision. In statistics terms, we refer to them as bias and
standard error or variance. We present the effect that each of the two
would have to our estimation process: decreasing the bias would lead
to better results on average; decreasing the standard error/variance
would lead to smaller dispersion.
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Decreasing the bias

(a) (b)

(c) (d)

A “good” estimator should have zero bias and zero variance!
However, this is practically impossible: hence, we settle for zero bias
and minimum variance. Let us proceed with the definitions.

Definition 53 (Bias) We define the bias of a point estimator as the differ-
ence between its expectation and the parameter itself.

bias
[
Θ̂
]
= E

[
Θ̂
]
− θ.

An estimator with zero bias is referred to as unbiased.



ie 300 186

Bias example

Assume a population with mean µ and variance σ2. As the
mean is unknown you decide to use the following three ap-
proaches to estimate it:

1. Get the average from a sample of 3 randomly picked obser-
vations.

2. Get a sample of 3 randomly picked observations and calcu-
late 2·X1+X2−X3

2 .

3. Get a sample of 3 randomly picked observations and calcu-
late 2X1 + X2 − X3.

What are the biases of each of the three point estimators?

1. Θ̂1 = X1+X2+X3
3 :

E
[
Θ̂1
]
= E

[
X1 + X2 + X3

3

]
=

1
3

E [X1]︸ ︷︷ ︸
µ

+ E [X2]︸ ︷︷ ︸
µ

+ E [X3]︸ ︷︷ ︸
µ

 =

=
1
3
(µ + µ + µ) = µ =⇒

=⇒ bias(Θ̂1) = 0.

2. Θ̂2 = 2·X1+X2−X3
2 :

E
[
Θ̂2
]
= E

[
2 · X1 + X2 − X3

2

]
=

2µ + µ− µ

2
= µ =⇒

=⇒ bias
(
Θ̂2
)
= 0.

3. Θ̂3 = 2 · X1 + X2 − X3:

E
[
Θ̂
]
= E [2 · X1 + X2 − X3] = 2µ + µ− µ = 2µ =⇒

=⇒ bias
(
Θ̂3
)
= µ.

So, the first two estimators will be unbiased (zero bias)! The
last one is biased and its bias is as big as the unknown mean.

Definition 54 (Standard error and variance) We define the standard
error of a point estimator as the square root of its variance.

SE
[
Θ̂
]
=
√

Var
[
Θ̂
]
.
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We want this to be minimum. A point estimator with minimum variance
and zero bias is called a minimum variance unbiased estimator.

Variances example

Assume the same population with unknown mean µ and
variance σ2. We use again the three estimators from before
(referred to as Θ̂1, Θ̂2, Θ̂3). What are the variances of each of
the three point estimators?

1. Θ̂1 = X1+X2+X3
3 :

Var
[
Θ̂1
]
= Var

[
X1 + X2 + X3

3

]
=

=
1
9

Var [X1]︸ ︷︷ ︸
σ2

+Var [X2]︸ ︷︷ ︸
σ2

+Var [X3]︸ ︷︷ ︸
σ2

 =

=
1
9

3σ2 =
σ2

3
.

2. Θ̂2 = 2·X1+X2−X3
2 :

Var
[
Θ̂2
]
= Var

[
2 · X1 + X2 − X3

2

]
=

= Var [X1] +
1
4

Var [X2] +
1
4

Var [X3] =

= σ2 +
1
4

σ2 +
1
4

σ2 =⇒ Var
[
Θ̂2
]
=

3
2

σ2.

3. Θ̂3 = 2 · X1 + X2 − X3:

Var
[
Θ̂3
]
= Var [2 · X1 + X2 − X3] =

= 4σ2 + σ2 + σ2 =⇒ Var
[
Θ̂3
]
= 6σ2.

Comparing, the first estimator has a significantly smaller vari-
ance than the other two. Among the three options, Θ̂1 is the
minimum variance unbiased estimator.

Definition 55 (Mean square error) We define the mean square error of
a point estimator as the expected value of the square error

(
Θ̂− θ

)2:

MSE = E
[(

Θ̂− θ
)2
]

.

We can use this to derive the fact that the mean square error is equal to
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the summation of the variance plus the square of the bias:

MSE(Θ̂) = E
[(

Θ̂− θ
)2
]
=

= E
[
Θ̂− E

[
Θ̂
]]2

+
(
θ − E

[
Θ̂
])2

=

= Var
[
Θ̂
]
+ bias(Θ̂)2.

By definition, the MSE tries to capture both bias and variance at
the same time. Hence, we typically say that one estimator is better
than another if its MSE is smaller. We may also define the relative
efficiency as the ratio of two estimator mean square errors:

Relative efficiency =
MSE

(
Θ̂1
)

MSE
(
Θ̂2
) .

If the relative efficiency is less than 1, then we say that point estima-
tor Θ̂1 is preferred to point estimator Θ̂2.

Mean square errors example

Assume the same population with unknown mean µ and vari-
ance σ2. We use for one last time the three estimators Θ̂1, Θ̂2,
and Θ̂3. What are the mean square errors of each of the three
point estimators? Which one would we prefer? What are the
relative efficiencies of Θ̂1, Θ̂2, Θ̂1, Θ̂3, Θ̂2, Θ̂3?

1. Θ̂1 = X1+X2+X3
3 : MSE(Θ̂1) =

σ2

3 + 0 = σ2

3 .

2. Θ̂2 = 2·X1+X2−X3
2 : MSE(Θ̂2) =

3σ2

2 + 0 = 3σ2

2 .

3. Θ̂3 = 2 · X1 + X2 − X3: MSE(Θ̂3) = 6σ2 + µ2.

Θ̂1 has the smallest MSE (as expected), followed by Θ̂2. The
relative efficiencies can be found as:

1. Θ̂1, Θ̂2:
MSE(Θ̂1)
MSE(Θ̂2)

=
σ2
3

3σ2
2

= 2
9 < 1, so Θ̂1 is preferred.

2. Θ̂1, Θ̂3:
MSE(Θ̂1)
MSE(Θ̂3)

=
σ2
3

6σ2+µ2 < 1, so Θ̂1 is preferred.

3. Θ̂2, Θ̂3:
MSE(Θ̂2)
MSE(Θ̂3)

=
3σ2

2
6σ2+µ2 < 1, so Θ̂2 is preferred.
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Review

Let us review very quickly the notions we have seen in this lecture:

• Population: X, where each element in the population is dis-
tributed with the same distribution (assume pdf f (x)) and with
potentially unknown parameter(s) θ.

• Random sample: X1, X2, . . . , Xn each independent and from the
same population with mean µ and variance σ2.

– E [Xi] = E [X] = µ.

– Var [Xi] = Var [X] = σ2.

• Statistic: any function of a random variable.

• Sampling distribution: the distribution of a statistic.

• Parameter: (potentially unknown) information necessary to fully
define the distribution of the population.

• Point estimator Θ̂: a statistic to estimate or approximate an un-
known parameter θ.

• Bias: E
[
Θ̂
]
− θ. we want this to be zero.

• Standard error:
√

Var
[
Θ̂
]
. we want this to be small.

• Minimum variance unbiased estimator: an estimator Θ̂ with zero
bias and minimum variance.
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17-18. Methods of estimation:
the method of moments and
maximum likelihood estimation

Learning objectives

After these lectures, we will be able to:

• Find point estimators for unknown parameters.

• Use the method of moments to find point estimators for
unknown parameters.

• Use maximum likelihood estimation to find point estimators
for unknown parameters.

– Compare and identify when it is easiest to use likelihood
and when log-likelihood.

• Propose new point estimators for unknown parameters
based on these three methods.

• Calculate the unknown rate of an exponential distribution,
or the unknown success probability of a Bernoulli distribu-
tion using the three methods.

Motivation: “I guess it is exponentially distributed. But what is
λ?”

Motivation: Estimating the mortality risk

We call mortality risk of a hospital the probability of death occurring
for any patient admitted to the hospital. The question we need to
answer is “what is the mortality risk” of a given hospital? It depends
on many factors, such as the type of conditions the patients admitted
in this hospital have; the equipment of the hospital; the personnel
of the hospital; among many, many others. Our intuition says the
following, though: could we not observe the hospital for a period of
time and then deduce what the risk is based on the obtained data? Is
this fair/unfair/correct/misleading? What is the number of deaths in
a hospital truly distributed as?
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Estimation

During Lectures 15 and 16, we saw what makes a good point estima-
tor Θ̂. We would like to have:

• small bias (zero, if possible). bias = E
[
Θ̂
]
− θ.

• small variance (minimum among all estimators). Var
[
Θ̂
]
.

• small mean square error. MSE = bias2 + Var
[
Θ̂
]
.

• We also defined the relative efficiency of two estimators Θ̂1, Θ̂2 as
MSE(Θ̂1)
MSE(Θ̂2)

.

So, given two or more estimators, you may calculate these items
and infer which one to use/which one is better. However, where
do these estimators come from? When faced with the problem of
recognizing a parameter based on data, what can we do? In this
series of lecture, we will work on deriving, using, and comparing
three methods of point estimation:

1. Method of moments estimators.

2. Maximum likelihood estimators.

3. Bayesian estimators.

In this set of notes, we only deal with the first two. The third one
is addressed in Lecture 19. Before we get to their details, we provide
a definition and a motivating example.

Definition 56 (Method of estimation) Assume we are provided a popu-
lation X distributed with unknown parameter(s) θ. We want to estimate θ.
Given a series of observations (sample) X1, X,2 . . . , X, how to come up with
a “good” point estimator Θ̂?

Mortality risk

Let us go back to our original motivating example with cal-
culating/estimating the mortality risk of a hospital based on
observations. Say, we have been observing the hospital over
the last 2 months, and we have observed 18 deaths in the first
150 patient admissions. What would we estimate the mortality
rate as?

Some more examples we may consider?

• How to estimate the rate of an exponential distribution?
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“We know the time between accidents in a factory is exponentially
distributed. How do we find out what the rate is?”

• How to estimate the probability (proportion) of a binomial distri-
bution?

“We know the number of students graduating from the College of
Engineering is binomially distributed. How do we find out what

the probability of success (graduation) is?”

• How to estimate the mean and variance of a binomial distribution?

“We know exam grades in IE 300 are normally distributed. But,
what is µ and σ2?”

Method of moments

Methods

We begin the section with the definition of sample (empirical) mo-
ments and population moments. Assume we have a population X
distributed with pdf f (x). We have managed to collect a set of sam-
ples from the population X1, X2, . . . , Xn. Then:

Definition 57 (Population moments) The k-th population moment of
a continuous population X (also referred to as the k-th moment of f (x)) is
calculated as

E
[

Xk
]
=

+∞∫
−∞

xk f (x)dx.

The same logic applies to the k-th population moment of a discrete popula-
tion X, with a summation rather than an integration:

E
[

Xk
]
= ∑

x∈X
xk p(x)dx.

Definition 58 (Sample (empirical) moments) The k-th sample moment
of X (also referred to as the k-th empirical moment of X) is calculated as

1
n

n

∑
i=1

Xk
i ,

where X1, X2, . . . , Xn are samples from the population X.

By definition, the first population moment of X is the population
mean, and the first sample moment of X is the sample average. On
the other hand, the second population moment of X is not the pop-
ulation variance; instead, E

[
X2] is only part of the calculation of the

variance:
Var [X] = E

[
X2
]
− (E [X])2 .
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Similarly, the second sample moment of X is not the sample variance!

Calculating population moments

Assume f (x) = 1
2 (1− α · x) defined for −1 ≤ x ≤ +1, where

α is some parameter. What are the first three population mo-
ments?

• first moment:

E [X] =

+1∫
−1

x · f (x)dx =

+1∫
−1

x · 1
2
(1− α · x) dx = −α

3
.

• second moment:

E
[

X2
]
=

+1∫
−1

x2 · f (x)dx =

+1∫
−1

x2 · 1
2
(1− α · x) dx =

1
3

• third moment:

E
[

X3
]
=

+1∫
−1

x3 · f (x)dx =

+1∫
−1

x3 · 1
2
(1− α · x) dx = −α

5

Calculating sample (empirical) moments

Assume we have collected n = 5 samples from the population
distributed with X1 = 0.7, X2 = 0.77, X3 = 0.65, X4 = 0.5, X5 =

0.83. What are the first three sample moments?

• first moment:

1
n

n

∑
i=1

Xi =
1
5
(0.7 + 0.77 + 0.65 + 0.5 + 0.83) = 0.69.

• second moment:

1
n

n

∑
i=1

X2
i =

1
5

(
0.72 + 0.772 + 0.652 + 0.52 + 0.832

)
= 0.48886.

• third moment:

1
n

n

∑
i=1

X3
i =

1
5

(
0.73 + 0.773 + 0.653 + 0.53 + 0.833

)
= 0.354189.
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The method

The main idea behind the method is the following: we want to match
empirical (sample) moments of a distribution to the population
moments. Before we apply the method, we make a couple of obser-
vations.
Observation 1 The k-th moment of f (x), E

[
Xk
]

depends only on the
unknown parameters θ1, θ2, . . . , θm.

Observation 2 The k-th moment of the sample, 1
n

n
∑

i=1
Xk

i depends

only on the data (the sample itself)!
So, if the 1st population moment is expected to match the 1st sam-

ple moment, and the 2nd population moment is expected to match
the 2nd sample moment, and so on, then.. how many moments do
we need to be able to solve a system of equations?

Based on the above discussion, we are now ready to formally state
the method of moments. Assume we have m unknown parameters
θ1, θ2, . . . , θm. The method of moment estimators Θ̂1, Θ̂1, . . . , Θ̂m can be
obtained by:

1. Get the first m 72 moments of f (x) and of the sample. 72 Need to take more than m if some
moments are zero or produce equations
on the same variables as the previous
ones.

2. Equate them.

3. Solve a system of equations with m unknowns (parameters θi)!

The solution obtained are the method of moment estimators Θ̂i

for each parameter θi.

Our first method of moments estimator

Recall earlier the population X distributed with f (x) =
1
2 (1− α · x) where α is some (unknown) parameter. Again,
recall that all members of the population are between −1 and
+1, i.e., −1 ≤ x ≤ 1. We have collected a sample of n = 5
observations from X and we found the observations to be
X1 = 0.7, X2 = 0.77, X3 = 0.65, X4 = 0.5, X5 = 0.83. What is the
method of moments estimator for α?

We have already found both the first population and the first
sample moments. Looking at the earlier solutions, we have

E [X] = − α
3 and 1

n

n
∑

i=1
Xi = 0.69. Equating we get:

−α

3
= 0.69 =⇒ α̂ = −2.07.

Observe how we put a “hat” ( ˆ ) on top of α when we assign a
value to it in the end. This is done to signal that this is merely
an estimator and is not necessarily its true value.
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The general case

In general, letting X = 1
n

n
∑

i=1
Xi, given any sample of n obser-

vations, we may calculate the method of moments estimator
for α as:

α̂ = −3 · X.

A “one-line” summary of the method of moments is that expec-
tation should match reality. Visually, I like to create the following
setup. First, divide your page in two columns, as in the visuals be-
low. Then, calculate the first moments for the population (red side)
and the sample (blue side). The first population moment should be
a function of your unknown parameter(s); the first sample moment
should be a function of your data, that is some value. We then ask:
when equating the two, can we solve for the unknown parameter
value(s)? If yes, we are DONE. Otherwise, we have to go higher, and
higher – as high as necessary to be able to solve the system of equa-
tions. Let’s take a look at the visuals that follow.

Expectation

Given a population X following
some distribution:

• Calculate E [X]:

– first population moment.

– only depends on the distri-
bution parameters.

E [X] =

{
∑ xp(x), if discrete∫

x f (x)dx, if continuous

In some cases, we have E [X]

already!

Reality

Given n observations X1, X2, . . .,
Xn from the population X:

• Calculate 1
n

n
∑

i=1
Xi:

– first sample moment.

– only depends on the obser-
vations.

1
n

n

∑
i=1

Xi = X

This is simply the sample average!

Equating we have:

E [X] =
1
n

n

∑
i=1

Xi.

Can we solve for the unknown parameter(s)? If not, we need to go
higher!
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Expectation

Given a population X following
some distribution:

• Calculate E
[
X2]:

– second population moment.

– depends on the distribution
parameters.

– not the variance!

E
[

X2
]
=

{
∑ x2 p(x), if discrete∫

x2 f (x)dx, continuous

In some cases, we may find E
[
X2]

easier! How?

Var [X] = E
[

X2
]
− (E [X])2 =⇒

=⇒ E
[

X2
]
= Var [X] + (E [X])2 .

Reality

Given a sample of n observations
X1, X2, . . . , Xn from the popula-
tion X:

• Calculate 1
n

n
∑

i=1
X2

i

– second sample moment.

– depends on the observations.

– not the sample variance!

1
n

n

∑
i=1

X2
i

Equating we have:

E
[

X2
]
=

1
n

n

∑
i=1

X2
i .

Can we solve the system (16)?{
E [X] = 1

n ∑n
i=1 Xi

E
[
X2] = 1

n ∑n
i=1 X2

i
. (16)

• If yes, we are done.

• If not, then we need to go even higher.

How high are we expected to go? Well, as high as necessary to solve
a system of equations. Typically, for k unknown parameters we will
need k linearly independent equations. Let’s see one more example.

One more example

Consider a (continuous) population X distributed with pdf

f (x) =
1
2
− 1

4
· θ1 · x +

1
8
· θ2 · x3, − 1 ≤ x ≤ 1.

Alas, θ1 and θ2 are unknown. Thankfully, we have collected a
sample of size n = 4 from the population. They are equal to
X1, X2, X3, X4.
What are the method of moments estimators for θ1 and θ2?
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Expectation

E [X] =
∫ +1

−1
x f (x)dx = −θ1

6
+

θ2

20
.

E
[
X2] = ∫ +1

−1
x2 f (x)dx =

1
3

.

PROBLEM!

E
[
X3] = ∫ +1

−1
x3 f (x)dx =

= −θ1

10
+

θ2

28
.

Reality

1
4
(X1 + X2 + X3 + X4) = X.

1
4
(
X2

1 + X2
2 + X2

3 + X2
4
)
= X.

Can’t use this equality!

1
4
(
X3

1 + X3
2 + X3

3 + X3
4
)
= X.

Here is the final system of equations:{
E [X] = 1

n ∑n
i=1 Xi

E
[
X3] = 1

n ∑n
i=1 X3

i
=⇒

{
− θ1

6 + θ2
20 = X

− θ1
10 + θ2

28 = X

Assume that our sample was X1 = 0.7, X2 = 0.6, X3 = 0.3, X4 =

0.7. Then:

X =
1
4 ∑ Xi =

2.3
4

= 0.575.

X =
1
4 ∑ X3

i = 0.3575.

So, the system becomes the following with a solution of:{
− θ1

6 + θ2
20 = 0.575

− θ1
10 + θ2

28 = 0.3575
=⇒

{
θ̂1 = −2.79375
θ̂2 = 2.1875

The method of moments estimator for an exponential distribution

Assume we suspect X is a population that is exponentially dis-
tributed, but with unknown rate λ. Thankfully, we have collected a
sample from that population: X1, X,2 . . . , Xn. We have one unknown
parameter (λ) so we will need one equation.

Let us try the first population moment 73: 73 Easy to find as it is the expected value
of an exponential distribution!

E [X] =
1
λ

.

Similarly, we may obtain the first sample moment as:

X =
X1 + X2 + . . . + Xn

n
.
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Recall that it is typical to denote a sample average as X.
Equating the two (per the method of moments), we get:

λ̂ = 1/X = n
n
∑

i=1
Xi

The method of moments estimator for a normal distribution

Assume we have some normally distributed population with mean
µ and variance σ2. Alas, they are both unknown. However, we have
collected n observations (a sample) from the population: X1, X2, . . . , Xn.
What is the method of moments estimators for µ and σ2.

We divide this proof in two parts:

1 The population moments.

For the population moments, we need (at least) the first two: E [X]

and E
[
X2]. The first one is easy, as it is equal to µ. The second one

on the other hand is not the variance: it is used in the variance
calculation! Recall that σ2 = E

[
X2] − (E [X])2 =⇒ E

[
X2] =

σ2 + (E [X])2 = σ2 + µ2. In summary, we have:

E [X] = µ

E
[

X2
]
= σ2 + µ2.
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Estimating the rate of earthquakes

We assume that the time between two earthquakes of mag-
nitude greater than or equal to 7 in Japan is exponentially
distributed. Here is a list of earthquakes that satisfy these
criteria from the last decade and when they have happened:

1 April 16, 2016

2 May 30, 2015

3 October 26, 2013

4 December 7, 2012

5 July 10, 2011

6 April 11, 2011

7 April 7, 2011

8 March 11, 2011

9 March 11, 2011

10 March 9, 2011

11 December 21, 2010

12 February 26, 2010

What is the method of moments estimator for the rate λ?

We first consider the time between the earthquakes. We have
11 such observations (between the first and the second, be-
tween the second and the third, etc.). Let us count this in days
(for consistency): 322 days, 581 days, 323 days, 516 days, 90

days, 4 days, 27 days, 0 days, 2 days, 78 days, 318 days.
From the method of moments, we want the first population
and sample method (as we only have one unknown parame-
ter), so:

E [X] = 1
λ

1
n

n
∑

i=1
Xi = 205.55

=⇒ λ̂ = 1 earthquake per 205.55 days.

2 The sample moments. These are easier to calculate as:

1
n

n

∑
i=1

Xi = X

1
n

n

∑
i=1

X2
i .

Here, again, we use X to represent the sample average.
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Equating the two, we get the following system of equations:

µ = X =⇒ µ̂ = X.

µ2 + σ2 =
1
n

n

∑
i=1

X2
i =⇒ σ̂2 =

n
∑

i=1
X2

i − nµ2

n
=

n
∑

i=1
X2

i − nX2

n
.

Estimating the grade distribution of an exam

Assume we want to estimate the grade distribution of an
exam before we grade all of the exams! If we expect the
distribution to be normally distributed, we could grade
the first five exams (at random) and get their grades
X1 = 80, X2 = 97, X3 = 50, X4 = 67, X5 = 84. Then, we

calculate 1
n

n
∑

i=1
Xi = 75.6 and 1

n

n
∑

i=1
X2

i = 5970.8. Finally, from

the method of moments, we have:


E [X] = 1

n

n
∑

i=1
Xi = 75.6

E
[
X2] = 1

n

n
∑

i=1
X2

i = 5970.8
=⇒

µ̂ = 75.6.

σ̂2 = 255.44.

The method of moments estimator for a Bernoulli distribution

Finally, let X be a Bernoulli random variable with probability of
success p, that is unknown. How to estimate it using the method
of moments? Well, we resort to the following setup. Let us run n
experiments of that Bernoulli random variable and let’s mark each of
them as Xi with a 1 (when successful) or a 0 (when failed). Then:

E [X] = p

1
n

n

∑
i=1

Xi

Equating the two, we get that

p =
1
n

n

∑
i=1

Xi.
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Fair or unfair?

Assume you have an unfair coin, but you have no idea how
unfair it is – that is, p is not known. Say you toss the coin
n = 10 times and get 7 Heads, 3 Tails. What is the estimator
you get for the probability of getting Heads from the method
of moments?

Let Heads be equal to 1 and Tails equal to 0. Then: 1
n

n
∑

i=1
Xi =

7
10 = 0.7. From the method of moments p̂ = 0.7.

A few extra examples

This is an example from the slides. In the slides, we mention that the
distribution is normal; but this is not necessary!

A delivery problem

We believe the times it takes to deliver a package are identi-
cally distributed with the same unknown mean µ and variance
σ2. We have collected information on 10 packages and the
time to delivery (in hours) are: 49.1, 47.9, 48.6, 50.4, 49.5,
49.8, 48.2, 50.3, 45.2, 46.2. What are good mean and variance
estimators for the normal distribution using the method of
moments?

We have two unknown parameters (mean and variance), so we
will need at least two population and sample moments. Let us
take the first two:

• Population 1st moment:

E
[

X1
]
= E [X] = µ

• Population 2nd moment:

E
[

X2
]
= Var [X] + (E [X])2 =

= σ2 + µ2

• Sample 1st moment:

1
10

10

∑
i=1

X1
i = 48.52

• Sample 2nd moment:

1
10

10

∑
i=1

X2
i = 2356.844

Equating the two and solving the system of equations, we get
µ̂ = 48.52 and σ̂2 = 2.6536.
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A discrete distribution

Assume we have a discrete random variable X defined over
0, 1, 2, 3, 4 and distributed with probabilities p(0) = θ1

3 , p(1) =
θ1
6 , p(2) = θ1

6 , p(3) = θ2
2 , p(4) = θ2

2 .

Now, assume we have collected a sample of n = 10 observa-
tions: 0, 1, 1, 3, 4, 2, 2, 3, 4, 1. Based on this, what is the method
of moments estimators for θ1 and for θ2?

Now, let’s see. At first glance we have two estimators.. But
we know better than that. We probably remember that

4
∑

x=0
p(x) = 1, which implies that:

4

∑
x=0

p(x) = 1 =⇒ θ1

3
+

θ1

6
+

θ1

6
+

θ2

2
+

θ2

2
= 1 =⇒ 2θ1

3
+ θ2 = 1.

Based on that, if we knew, say θ1 we could obtain θ2 right
away. Let us get the first moments and equate them:

E [X] = 0 · θ1

3
+ 1 · θ1

6
+ 2 · θ1

6
+ 3 · θ2

2
+ 4 · θ2

2
=

θ1 + 7θ2

2
.

1
n

10

∑
i=1

Xi =
1

10
(0 + 1 + 1 + 3 + 4 + 2 + 2 + 3 + 4 + 1) = 2.1.

Finally, we have a system of equations at our hands!


2θ1
3 + θ2 = 1

θ1+7θ2
2 = 2.1

=⇒

θ̂1 = 42
55

θ̂2 = 27
55
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Maximum likelihood estimation

Basics

Recall that we already have a population X distributed with pdf
f (x). Also recall that the pdf has one or more unknown parame-
ters θ. We may then write that the pdf is actually a function of x and
θ as f (x, θ). That is, we need inputs for both the value x and the
parameter(s) θ before evaluating f (x). Finally, we have already col-
lected a sample of n observations from the population, let them be
X1, X2, . . . , Xn.

This brings us to the definition of the likelihood function.

Definition 59 (Likelihood function) The likelihood function of a
sample of n observations X1, X2, . . . , Xn is defined as

L(θ) = f (X1, θ) · f (X2, θ) · . . . · f (Xn, θ) =
n

∏
i=1

f (Xi, θ).

Observe how the likelihood function is only a function of θ as Xi, i =

1, . . . , n are known quantities.

The method

The main idea is pretty simple: for the sample to have been obtained
the way it has, then the observations must have been likely. Hence,
they must be values that maximize the likelihood function! This is
summarized in the following statement:

The maximum likelihood estimators Θ̂ are
the values that maximize the likelihood function.

The maximum likelihood estimators are also referred to as MLE.
To find this maximizer, we take the first derivative of the likelihood
function and equate it to 0:

∂L
∂θ

= 0

and solve for θ to obtain the estimator.
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Our first MLE estimator

Go back again to the population X distributed with
f (x) = 1

2 (1− α · x) where α is the unknown parameter
we would like to estimate. We have a sample from X as
X1 = 0.7, X2 = 0.77, X3 = 0.65, X4 = 0.5, X5 = 0.83.
What is the MLE estimator for α?

First to build the likelihood function:

L (α) = f (X1) · f (X2) · f (X3) · f (X4) · f (X5) =

=
1

32
(1− 0.7α) (1− 0.77α) (1− 0.65α) (1− 0.5α) (1− 0.83α) =

=
1

32
− 0.107813α + 0.147784α2 − 0.100557α3 + 0.0339432α4 − 0.0045436α5

Then, we get the first derivative and set it equal to 0 to find
the maximizer. We get:

∂L
∂α

= 0 =⇒ α = 1.88.

This solution could also be found visually! Here is a plot of the
likelihood function and the point where it is maximized is easier to
find.

1.2 1.4 1.6 1.8 2
−1

0

1

2

3

·10−5

L(α)

Finally, observe how we got a different estimator here compared to
the method of moments!
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Extension to log-likelihood

Since the likelihood involves a product of n pdf values, it comes as
no surprise that our end result may be a little difficult to control and
use. This is why we may also introduce the log-likelihood:

Definition 60 (Log-likelihood function) The log-likelihood function
of a sample of n observations X1, X2, . . . , Xn is defined as

ln L(θ) = ln f (X1, θ) + ln f (X2, θ) + . . . + ln f (Xn, θ) =
n

∑
i=1

ln f (Xi, θ).

Observe how also the log-likelihood function is only a function of θ as
Xi, i = 1, . . . , n are known quantities. Contrary to the simple likelihood
function, the log-likelihood is a summation which makes it easier to differen-
tiate.

Our first MLE estimator using log-likelihood

We have:

• pdf f (x) = 1
2 (1− α · x);

• sample X1 = 0.7, X2 = 0.77, X3 = 0.65, X4 = 0.5, X5 = 0.83.

We build the log-likelihood function as:

ln L (α) = ln f (X1) + ln f (X2) + ln f (X3) + ln f (X4) + ln f (X5) =

= ln
1
2
(1− 0.7α) + ln

1
2
(1− 0.77α) + ln

1
2
(1− 0.65α)+

+ ln
1
2
(1− 0.5α) + ln

1
2
(1− 0.83α).

Here, we note that
(

1
2 (1− Xiα)

)′
= Xi

αXi−1 . Hence, in our case
we have:

∂ ln L
∂α

= 0 =⇒
0.7

1− 0.7α
+

0.77
1− 0.77α

+
0.65

1− 0.65α
+

0.5
1− 0.5α

+
0.83

1− 0.83α
= 0 =⇒

=⇒ α = 1.88.

The result obtained using the likelihood or the log-likelihood
function will be the same.

The MLE estimator for an exponential distribution

Assume we have obtained a sample of n observations X1, X2, . . . , Xn

with average X = X1+X2+...+Xn
n . We also assume that the population
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is exponentially distributed with rate λ. What is the MLE estimator
for λ?

First, we build the log-likelihood function as:

ln L(λ) = ln λe−λX1 + ln λe−λX2 + . . . + ln λe−λXn =

= ln λ− λX1 + ln λ− λX2 + . . . + ln λ− λXn =

=n ln λ− λ (X1 + X2 + . . . + Xn)

Again, find the maximizer:

∂ln L(λ)
∂λ

= 0 =⇒ (n ln λ− λ (X1 + X2 + . . . + Xn))
′ = 0 =⇒

n
λ
− (X1 + X2 + . . . + Xn) = 0 =⇒ n− λ

n

∑
i=1

Xi = 0 =⇒ λ =
n

n
∑

i=1
Xi

=
1
X

Observe how we have reached the same result as when using the
method of moments. Recall that this is not necessarily always the
case.

Say we had not wanted to use the log-likelihood and instead used
the simple likelihood function L (λ):

L(λ) = λe−λX1 · λe−λX2 · . . . · λe−λXn = λn · e−λ(X1+X2+...+Xn) =

= λn · e
−λ

n
∑

i=1
Xi

Take the derivative:

∂L(λ)
∂λ

= 0 =⇒

λn · e
−λ

n
∑

i=1
Xi

′ = 0 =⇒

=⇒ n · λn−1 · e
−λ

n
∑

i=1
Xi
− λn ·

n

∑
i=1

Xi · e
−λ

n
∑

i=1
Xi

= 0.

Observe how we can simplify quite a bit: we may divide by λn−1

(because we know that λ > 0). This gives us:

n · e
−λ

n
∑

i=1
Xi
− λ ·

n

∑
i=1

Xi · e
−λ

n
∑

i=1
Xi

= 0

We may also divide by e
−λ·

n
∑

i=1
Xi

because it is also definitely positive.
This leads to the much more manageable:

n− λ ·
n

∑
i=1

Xi = 0 =⇒ λ =
n

n
∑

i=1
Xi

=
1
X

Note how getting the same result with the log-likelihood was sig-
nificantly easier due to the nature of this probability density function.
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The MLE estimator for a Bernoulli distribution

Once again, consider that we have a population producing random
variables distributed as Bernoulli with probability of success p. We
have obtained a sample of n = 10 observations with 7 successes (let
them be Xi = 1) and 3 failures (Xi = 0). What is the MLE estimator
for the unknown p?

Based on the MLE method we first need to calculate the likelihood
function. Recall that for a Bernoulli random variable its probability
mass function (as it is a discrete random variable) is P(0) = 1− p
and P(1) = p. Without loss of generality, assume we arrange the
observations with the successes first (the first, say, 7 observations)
and the failures next (the remaining 10− 7 = 3 observations).

We are now ready to build the likelihood function:

L(p) =

(
7

∏
i=1

p

)
·
(

10

∏
i=8

(1− p)

)
= p7 · (1− p)10−7 = p7 · (1− p)3 .

The derivative of the likelihood function can be found as:

∂L
∂p

=
(

p7 · (1− p)3
)′

= 7p6(1− p)3 − 3(1− p)2 p7.

Now, equate this to 0 to get the maximizer:

7p6(1− p)3 − 3(1− p)2 p7 = 0 =⇒
=⇒ 7 (1− p)− 3p = 0 =⇒ p̂ = 0.7.

In the above, we make the assumption that p ∈ (0, 1): that is, it
cannot be 0 or 1. If we allowed this to be the case, then solving would
give three solutions p = 0, p = 1, p = 0.7. However, the first two
solutions are minima rather than maxima, and we would still pick
p̂ = 0.7 as our estimator.

A few extra examples

This is an example from the slides. In the slides, we mention that the
distribution is normal; but this is not necessary!
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A delivery problem

We believe the times it takes to deliver a package are identi-
cally distributed with the same unknown mean µ and variance
σ2. We have collected information on 10 packages and the
time to delivery (in hours) are: 49.1, 47.9, 48.6, 50.4, 49.5,
49.8, 48.2, 50.3, 45.2, 46.2. What are good mean and variance
estimators for the normal distribution using the method of
moments?

We have two unknown parameters (mean and variance), so we
will need at least two population and sample moments. Let us
take the first two:

• Population 1st moment:

E
[

X1
]
= E [X] = µ

• Population 2nd moment:

E
[

X2
]
= Var [X] + (E [X])2 =

= σ2 + µ2

• Sample 1st moment:

1
10

10

∑
i=1

X1
i = 48.52

• Sample 2nd moment:

1
10

10

∑
i=1

X2
i = 2356.844

Equating the two and solving the system of equations, we get
µ̂ = 48.52 and σ̂2 = 2.6536.
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A discrete distribution

Assume we have a discrete random variable X defined over
0, 1, 2, 3, 4 and distributed with probabilities p(0) = θ1

3 , p(1) =
θ1
6 , p(2) = θ1

6 , p(3) = θ2
2 , p(4) = θ2

2 .

Now, assume we have collected a sample of n = 10 observa-
tions: 0, 1, 1, 3, 4, 2, 2, 3, 4, 1. Based on this, what is the method
of moments estimators for θ1 and for θ2?

Now, let’s see. At first glance we have two estimators.. But
we know better than that. We probably remember that

4
∑

x=0
p(x) = 1, which implies that:

4

∑
x=0

p(x) = 1 =⇒ θ1

3
+

θ1

6
+

θ1

6
+

θ2

2
+

θ2

2
= 1 =⇒ 2θ1

3
+ θ2 = 1.

Based on that, if we knew, say θ1 we could obtain θ2 right
away. Let us get the first moments and equate them:

E [X] = 0 · θ1

3
+ 1 · θ1

6
+ 2 · θ1

6
+ 3 · θ2

2
+ 4 · θ2

2
=

θ1 + 7θ2

2
.

1
n

10

∑
i=1

Xi =
1

10
(0 + 1 + 1 + 3 + 4 + 2 + 2 + 3 + 4 + 1) = 2.1.

Finally, we have a system of equations at our hands!


2θ1
3 + θ2 = 1

θ1+7θ2
2 = 2.1

=⇒

θ̂1 = 42
55

θ̂2 = 27
55
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19. Methods of estimation:
Bayesian estimation

Learning objectives

After this lecture, we will be able to:

• Use Bayesian estimation to find point estimators for un-
known parameters.

• Propose new point estimators for unknown parameters
based on prior information.

Motivation: Heads or Tails?

We flip a coin 10 times and we get 6 Heads and 4 Tails. Do you be-
lieve it is a fair coin? What does the method of moments and the
maximum likelihood estimation method say about this situation?

Quick review

During these past two lectures, we discussed two methods to identify
“good” estimators Θ̂ for a series of unknown parameters:

• the method of moments.

1. Compute the moments of the population, calculated as E
[

Xk
]
.

2. Compute the moments of the sample (empirical moments),

calculated as 1
n

n
∑

i=1
Xk

i .

3. Equate the two and solve a system of equations for the un-
known parameters.

• maximum likelihood estimation.

1. Calculate the likelihood function as

L (θ) = f (X1, θ) · f (X2, θ) · . . . · f (Xn, θ)

2. Or the log-likelihood function as

ln (L (θ)) = ln ( f (X1, θ)) + ln ( f (X2, θ)) + . . . + ln ( f (Xn, θ))

3. Find the maximizer (usually found by setting the derivative per
each unknown parameter equal to 0).
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Both these methods have one thing in common: they require no
prior information to work, but instead they base all of their obser-
vations on the obtained sample. What if I already know some more
information about what is going on?

Bayesian estimation through an example

We begin in a slightly different way than usually. We begin with an
example to help us build intuition! Assume I carry 3 coins with me:

1. One with both sides showing Heads.

2. One with both sides showing Tails.

3. One that is fair and has a side of Heads and a side of Tails.

Assume I randomly pick one coin and start flipping it. I report
to you the number of tries (n) and the number of Heads (x). For
example, I may tell you n = 8, x = 5 or n = 2, x = 0, and so on.

Flipping the coin: first take

I let you know that I flipped the coin three times and got
Heads both times: n = 3, x = 2. What are the method of
moments and the maximum likelihood estimators for p?

We will have E [X] = p and 1
3 · (1 + 1 + 0) = 2

3 , and equating
will give p̂ = 2

3 . The likelihood function is L (p) = p2 · (1− p),
and maximizing will also give p̂ = 2

3 .

But... I carry three coins with me. Shouldn’t I use this infor-
mation somehow?

1. Can it be my “2-Heads” coin?

2. Can it be my “2-Tails” coin?

3. Does it have to be my “50-50” coin?

This is the key to realizing what Bayesian estimation brings to
the table: extra information in the form of prior probabilities for the
parameters that are unknown.

Bayesian estimation

We separate the discussion between discrete sets for the values the
parameter can take (like in the previous example where I carried
3 distinct coins with me) and between continuous sets, where the
parameter can be any real number in a range of values.
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For discrete parameter values

Before describing the method, we provide some notation:

• prior probabilities (“priors”): the probability of seeing a certain
parameter P (θ).

• likelihood probabilities (“likelihoods”): the likelihood of seeing
an outcome given a certain parameter P (X|θ).

• posterior probabilities (“posteriors”): the multiplication of the
two P(θ) · P (X|θ).

A quick note about the likelihoods: those are calculated in identi-
cal manner as the likelihood function in the maximum likelihood
estimation method!
The Bayesian estimation method then states that:

“The higher the posterior probability,
the better the chance of having that parameter.”

This is it! This is the whole method!
Flipping the coin: second take

Let us go back to the example where I carried three coins (“2-
Heads”; “2-Tails”; and “50-50”) and I picked one at random.
After 3 tries, we got 2 Heads: n = 3, x = 2. Let’s see what we
have for these three distinct cases of p = 1, p = 0, p = 0.5:

• priors P(p): probability of picking a certain coin, that is
P(p = 1) = P(p = 0) = P(p = 0.5) = 1

3 .

• likelihoods P(X = 2|p): likelihood function of seeing two
Heads for each coin. For example, the likelihood function
for the p = 0.5 coin with x = 2 Heads in n = 3 tries would
be: p2 · (1− p) = 0.52 · 0.5 = 0.125.

• posteriors P(p) · P(X = 2|p): we will need to calculate this
for each coin.

Let us put this in table format.
parameter prior likelihood posterior
p P(p) P(X = 2|p) P(p) · P(X = 2|p)
0

1
3 02 · 11 = 0 1

3 · 0 = 0
1

1
3 12 · 01 = 0 1

3 · 0 = 0
0.5 1

3 0.52 · 0.51 = 0.125 1
3 · 0.125 = 0.04166

The maximum value (and only non-zero probability!) is
achieved for the “50-50” coin so it must be this!
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See? It is pretty intuitive. Of course, we may complicate things by
making the probability of picking a coin a little more general.

Flipping the coin: third take

I still have three types of coins on me. But, given that I am an
adult that carries money wherever I go, I carry more actual
coins (“50-50”) than novelty coins (“2-Heads”, “2-Tails”). More
specifically, I carry 6 real coins and 1 of each novelty coin. I
take a coin out and toss it twice and get two Heads! Which
coin is it?

Let us try the table format again:
parameter prior likelihood posterior
p P(p) P(X = 2|p) P(p) · P(X = 2|p)
0

1
8 02 = 0 1

8 · 0 = 0
1

1
8 12 = 1 1

8 · 1 = 0.125
0.5 3

4 0.52 = 0.25 3
4 · 0.25 = 0.1875

The maximum value is still achieved for a “50-50” coin, so we
are inclined to think we picked one. Note how much closer
the posteriors are, though..

It would actually take one more Heads to change our param-
eter estimation towards the “2-Heads” novelty coin! Why is
that?

Normalizing may also be useful. Instead of looking at the poste-
rior values as they are in the end, we may turn them into actual “%”
values to help compare them. To normalize simply take each pos-
terior and divide it by the summation of all posterior probabilities.
For example, in our third take (see above) we would end up with
probabilities:

• P(p = 0) = 0
0+0.125+0.1875 = 0.

• P(p = 1) = 0.125
0+0.125+0.1875 = 0.4.

• P(p = 0.5) = 0.1875
0+0.125+0.1875 = 0.6.

This helps us quantify our parameter estimation even more. There
is a 40% chance we picked the “2-Heads” coin and a 60% chance we
picked one of the “50-50” coins.
Let’s work one more example before we move to the continuous case.
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A computer vision system: third take

A machine learning algorithm for computer vision is trained
to observe the first vehicle that passes from an intersection
at or after 8am every day. Then, it reports the time from that
vehicle to the next one again and again. We assume this time
is exponentially distributed but with unknown λ.

• If the first vehicle of the day was a personal car, then λ1 = 1
per minute.

• If the first vehicle of the day was a motorcycle, then λ2 = 1
per 5 minutes.

• If the first vehicle was a truck, then λ3 = 1 per 10 minutes.

• If the first vehicle was a bike, then λ4 = 1 per 12 minutes.

We observe a sample of 5 times: X1 = 9 minutes, X2 = 8.5
minutes, X3 = 8 minutes, X4 = 10.5 minutes. What is the
probability of each parameter λ?

First, we need to calculate the prior probabilities P(λ). The
first vehicle of the day is:

• a personal car with probability λ1
λ1+λ2+λ3+λ4

= 0.732 (why?),

• a motorcycle with probability λ2
λ1+λ2+λ3+λ4

= 0.146,

• a truck with probability λ3
λ1+λ2+λ3+λ4

= 0.073,

• or a bike with probability λ4
λ1+λ2+λ3+λ4

= 0.049.

With these in hand, we calculate the likelihood func-
tions as being λ · e−λ·X1 · λ · e−λ·X2 · . . . · λ · e−λ·Xn since
we have an exponentially distributed random variable.
For example, if λ = λ1 = 1, then we would have
1 · e−1·9 · 1 · e−1·8.5 · 1 · e−1·8 · 1 · e−1·10.5 = e−36 = 2.32 · 10−16.
Finally:

parameter prior likelihood posterior
λ P(λ) P(X1, X2, X3, X4|λ) P(λ) · P(X1, X2, X3, X4|λ)
λ1 = 1 0.732 2.32 · 10−16 1.70 · 10−16

λ2 = 0.2 0.146 1.19 · 10−6 1.74 · 10−7

λ3 = 0.1 0.073 2.73 · 10−6 1.99 · 10−7

λ4 = 0.066 0.049 1.79 · 10−6 8.77 · 10−8

From the results it seems that the vehicle that first passed
today is more likely a truck!
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If we wanted to assign probability values to each type of vehicle,
we would report:

• personal car: 6.24·10−17

6.24·10−17+1.43·10−7+1.81·10−7+8.18·10−8 = 1.54 · 10−10 ≈ 0.

• motorcycle: 0.3527.

• truck: 0.4458.

• bike: 0.2015.

We can now move to the continuous case.

For continuous parameter values

Let us again begin with an example. The method is largely still the
same; but the definitions of some of the items change slightly to
accommodate the continuous nature of the unknown parameter(s).

Say we have a coin that is made with the goal of being fair; that is,
“50-50”. But, materials fail and get deposited more on one side than
the other resulting in different compositions for the probability of
Heads and Tails. Say, in the end, the probability of Heads is normally
distributed with N (0.5, 0.01), that is a mean of µ = 0.5 and a vari-
ance σ2 = 0.01 =⇒ σ = 0.1. Visually, we would get the distribution
of Figure 63

Figure 63: The distribution of the probability of getting Heads in the continuous
version of the problem. We see how p = 0.5 is more likely, but we can get values as
low as 0.1, 0.2, or as high as 0.8, 0.9, albeit with very small likelihood.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Now that we know this, say we tossed a coin 10 times, and got 10

straight times Heads! Recall that both the method of moments and
the maximum likelihood estimation method would simply assume
that the coin has p = 1 and proceed.

Getting 10 Heads in 10 tosses would be highly improbable for
a coin that is “50-50”, but it could mean that I have a biased coin
towards Heads. So, what should our estimate be?
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First, calculate the likelihood function, the way we did during the
maximum likelihood estimation calculations. In this case, it would be
L(p) = p10. Let’s plot that (see Figure 64).

Figure 64: The likelihood function of getting 10 Heads after tossing a coin 10 times. It
is maximized at p = 1, which would then be our maximum likelihood estimator.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In Bayesian estimation for discrete-valued parameters earlier, we
calculated P(θ) (priors) with P(X|θ) (likelihoods) to obtain a series
of posteriors that we would compare. In the continuous version, we
calculate f (θ) (prior distribution) with L(θ) (likelihood function) to
obtain a posterior distribution that we would then find the maximizer
at! Confused? Let’s look at this visually again in Figure 65.

Figure 65: The posterior distribution, found by multiplying f (θ) (the pdf of the normal
distribution N (0.5, 0.01)) with the likelihood function L(θ). The maximizer here is the
Bayesian estimator and is found at p̂ = 0.6531.
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Let us define the notation for the method then:

• prior distribution: the distribution of the real-valued and continu-
ous parameter θ, f (θ).

• likelihood function: the likelihood function, built just as in the
maximum likelihood estimation metho, L(θ).
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• posterior distribution: the multiplication of the two functions
f (θ) · L (θ).

The Bayesian estimation method for continuous parameters states
that:

“The Bayesian estimator is found by
maximizing the posterior distribution.”

And, yes! This sums it up. Let us view one example from beginning
to end using the method.

Mortality risk

We call mortality risk of a hospital the probability of death oc-
curring for any patient admitted to the hospital. The mortality
risk in US hospitals is in general exponentially distributed
with a mean at 1.5% (that is, λ = 1

1.5% ). You have been ob-
serving a hospital and have seen 25 deaths in the first 150

patient admissions. What is the Bayesian estimator for the true
mortality rate of the hospital?

Right away, distinguish between two items:

1. the prior distribution that we believe the mortality risk to
be distributed as (exponential)

2. the mortality rate itself is a Bernoulli random variable (p
and 1 − p); in our case, we have a sample we have collected
(25 deaths in 150 admissions) to help us estimate p.

So, let us start collecting what we need one-by-one.

Prior distribution:

f (p) =
1

1.5
e−

1
1.5 p.

Likelihood function:

L(p) = p25 · (1− p)125.

Posterior distribution:

f (p) · L(p) =
1

1.5
e−

1
1.5 p · p25 · (1− p)125.
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Mortality risk (cont’d)

To maximize, get the derivative and equate to 0 to get:

∂ f (p) · L(p)
∂p

=
4
9

e−
2
3 p (p− 1)124 p24 ((p− 226) p + 37.5) = 0 =⇒

=⇒ ((p− 226) p + 37.5) = 0 =⇒ p = 0.16605.

The maximizer is, then, at p̂ = 0.16605.

If we want to, we can see the same result visually. First, plot our
prior beliefs/distribution:

0 0.05 0.1 0.15 0.2 0.25 0.3

Then, plot our likelihood function based on the sample collected:
And finally plot the posterior distribution, and check that the

maximizer is indeed at p̂ = 0.16605:

One last example

Let us work on one more example for continuously distributed
parameters. Assume we have a population distribution with pdf
f (x) = (θ + 1) xθ , for 0 ≤ x ≤ 1. Moreover, assume that θ is not
totally random, but is instead distributed with pdf f (θ) = 1

12 (3− θ),
defined over −2 ≤ θ ≤ 2. Assume we have collected a sample of
X1 = 0.9, X2 = 0.89, X3 = 0.76, X4 = 0.96. What is the Bayesian
estimator for θ?

You may inspect the solution visually as a homework assignment.
Algebraically, though, we would multiply the prior distribution
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0 0.05 0.1 0.15 0.2 0.25 0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

( f (θ)) with the likelihood function (L(θ)) to obtain the posterior
distribution. In mathematical terms:

f (θ) =
1

12
(3− θ)

L(θ) = (θ + 1) Xθ
1 · (θ + 1) Xθ

2 · (θ + 1) Xθ
3 · (θ + 1) Xθ

4 =

= (θ + 1)4 (X1 · X2 · X3 · X4)
θ = (θ + 1)4 0.5844096θ

f (θ) · L(θ) = 1
12

(3− θ) · (θ + 1)4 0.5844096θ
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Getting the derivative of the posterior, and equating it to 0, we get:

∂ f (θ)L(θ)
∂θ

= 0 =⇒ 0.0447628 · 0.58441θ(1 + θ)3(17.4783 + θ(−11.3083 + θ)) = 0.

We get three possible solution: θ = −1, θ = 1.85, or θ = 9.46.
We note that the last one cannot happen as θ is between -2 and 2.
Between the two remaining possible solutions, we compare their
posterior distribution values:

• f (−1) · L(−1) = 1
12 (3− (−1)) · ((−1) + 1)4 0.5844096−1 = 0.

• f (1.85) · L(1.85) = 1
12 (3− 1.85) · (1.85 + 1)4 0.58440961.85 = 2.34.

Hence, θ̂ = 1.85 is the maximizer and the Bayesian estimator.
I lied.. Here is the visual version of the posterior also. It is clear

that 1.85 is indeed the maximizer!

−2 −1 1 2
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20. Confidence intervals for
single population means

Learning objectives

After lectures 20–23, we will be able to:

• Build confidence intervals for:

– unknown means;

– unknown variances;

– unknown proportions.

• Build confidence intervals for:

– the difference between two unknown means;

– the ratio between two unknown variances;

– the difference between two unknown proportions.

• Understand the effect of Type I error, or probability α.

• Calculate errors and interval margins.

• Select appropriate sample sizes to keep errors below a limit.

Motivation: Point estimates lie

Assume we are told that a new smartphone has a battery of 24 hours,
compared to a battery of 22 hours of the previous iteration. A person
upgrades to the new phone to see that their new phone also has the
same battery as the older one! Should that surprise them?

Motivation: Elections

During an election, many (many) polls are released to capture the
momentum of the different political parties and candidates. However,
surprises and upsets still happen: does that really mean that polling
is off? Or should we start caring about the set of plausible outcomes
rather than fixating on a single point estimate?
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Quick review

In Part 2 of the class, we discussed parameter estimation. Specifically,
we saw that:

• Given a population X...

• distributed with some probability density function f (x)...

• but with unknown parameter θ...

• we may estimate θ using an estimator Θ̂...

• and use a sample X1, X2, . . . , Xn from the original population...

• to arrive at a single conclusion: a point estimate θ̂!

We also discussed how “wrong” the estimator is, by calculating its
bias, variance, mean square error. But what about the probability
our true parameter θ is smaller than θ̂ (or bigger than, or equal to)?

Motivating question 1

We are interested in estimating the unknown mean battery
of a new smartphone (population X includes all new smart-
phones in circulation). We bought a new phone (a random
sample from population X, let us call it X1) and got that the
new battery is equal to 21 hours, smaller than what our pre-
vious phone had! We are naturally disappointed, so we start
asking questions about this new estimate µ̂ = 21. What is the
probability that the true battery life of smartphones in X is
above 21 hours?

Motivating question 2

We are interested in estimating the unknown proportion of
people in support of candidate A. We have interviewed 10

voters (randomly selected) and have found that 7 of them
support candidate A. The point estimate then, based on our
sample, is that p̂ = 70%. What is:

• the probability that the true proportion of voters in support
of candidate A is above 70%?

• the probability that the true proportion of voters in support
of candidate A is below 70%?

• the probability that the true proportion of voters in support
of candidate A is exactly equal to 70%?
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An introduction to confidence intervals

At least one of the previous questions is easy: the probability that the
estimate is exactly equal to the true unknown parameter is... zero!
This is because for any continuously distributed random variable,
P(X = x) = 0... So, one thing is for certain: your estimate is not the
true parameter value. This is why we introduce confidence intervals.

Confidence intervals appear very often in every day life. Some
examples include the following.

Election time!

We may want to estimate the proportion of the population
preferring one candidate over another. However simply aver-
aging out all the polls is not a solution: we want to reveal all
possible scenarios. To do show, we may produce an interval
of all plausible scenarios and shade them. See the following
image taken from 538 (fivethirtyeight.com) on October 20,
2020.

Note the small legend on the upper right corner that “warns”
us: 80% of the outcomes fall in the shaded range! So there is
still a 20% chance we get something outside that range.

Grade disparity

Many students are familiar with a tool, built by by Devin
Oliver, Johnny Guo, Joe Tan, Jerry Li, Tina Abraham, Andy
(Tianyue) Mao, Kara Landolt, Nathan Cho and Wade Fagen-
Ulmschneider (see https://waf.cs.illinois.edu/discovery/

grade_disparity_between_sections_at_uiuc/) which shows
the historical grade distribution for different classes at UIUC.
When presenting this information, we do not only want to
look at the average GPA that a class has.

https://waf.cs.illinois.edu/discovery/grade_disparity_between_sections_at_uiuc/
https://waf.cs.illinois.edu/discovery/grade_disparity_between_sections_at_uiuc/
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Grade disparity (cont’d)

On the contrary, we are also interested in addressing the ques-
tion: what is the probability a random student ends up with a
grade within some range of the expected grade?

And this is clearly presented here, too! Looking at the screen-
shot, some classes have a very narrow range of values (mean-
ing less deviations from the expected grade), whereas others
(look at this last one above!) have a wide array of possible
grades.

Cone of uncertainty

For any of us that have lived in a state that gets hit by hurri-
canes, we have grown used to seeing a map like this one:

This is actually from Hurricane/Superstorm Sandy (end of
October 2012). When someone sees this, they may think that
this reveals the areas that may be hit, or even that this is the
size of the storm. But this is not the case! This “cone of uncer-
tainty” reveals an interval of 60-70% of expected paths based
on historical information!
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What do all of the above have in common? They are based on this
understanding that the true, unknown parameters may be difficult
to capture with certainty; so they resort to presenting a series of
outcomes (in range form) that reveal a certain percentage of scenarios
that can happen. In the election, that was 80% of the scenarios; in
the grade disparity case, the first shading includes 50% of the grades
historically; in the cone of uncertainty about 60-70% of historical
information.

So, let us summarize really quickly before moving to the definition
of confidence intervals.

• Point estimation: a single estimate with our best guess at what the
unknown parameter is.

• Interval estimation: an interval of values where the unknown
parameter is believed to belong in.

What are the advantages of interval estimation?

1. A point estimation reveals a single point of information about the
whereabouts of the unknown parameter, leaving us with no idea
of how close the actual parameter is expected to be:

2 3 4 5 6 7 8
Parameter

For example, in the above figure the red parameter can be any
value between 2 and 8, but our estimate places it at 5.5. On the
other hand, the blue one is also estimated at 5.5; however it can
only take values within 4 to 6. An interval estimate would reveal
more information about these ranges.

2. An interval estimation reveals a margin of error as a measure of
accuracy for our parameter.

2 3 4 5 6 7 8
Parameter

In this example, we still estimate the red parameter to be 5.5; but
now we are also told that we would not be surprised to see it be in
any point between 4 and 7.
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Now, a confidence interval, usually presented in the form of
[L, U], contains the most “believable” values for the estimated pa-
rameter. Every confidence interval is associated with a confidence
level, which represents the probability that the true parameter value
falls in that interval. In mathematical terms:

P(L ≤ θ ≤ U) = 1− α.

Combining, we write that [L, U] is a 100 · (1− α)% confidence inter-
val for parameter θ.

A couple of notes about confidence intervals and how they came
to be. First of all, both L and U are obtained from the random sample
we selected. That is, they depend on the sample selected. Secondly, α

is an external parameter and we can make it as small or as big as we
want to. Smaller α values lead to higher confidence for our interval
estimates and vice versa. Typical value for α is 5%, which leads to the
creation of 95% confidence intervals. Finally, we may also represent
confidence intervals as

Point estimate±Margin

Visually, this is naturally showcased in a plot with the point esti-
mate in the center and the margins on each side as whiskers. As an
example we provide Figures 66 and 67.

Figure 66: Here we run 10 experiments and provide the estimate obtained from each of
them with a blue dot. We then build a 95% confidence interval around the estimate;
this is shown with the whiskers of the plot.

µ

Experiment

In both figures we sometimes underestimate and sometimes over-
estimate the parameter. When we extend our estimate to include a
range of “believable” values, we see that the number of experiments
that include the true parameter changes sharply. Observe how al-
most all intervals contain the true mean in the first example; and
about half of them do in the second example. As an example take
the second experiment: we are underestimating the true value of the
parameter through our estimation process. However, in the first fig-
ure the 95% confidence interval includes the true parameter µ. In the
second figure, it does not.
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Figure 67: Here we run 10 experiments and provide the estimate obtained from each
of them with a blue dot (note that the estimates are the same as in Figure 66). We then
build a 50% confidence interval around the estimate; this is shown with the whiskers
of the plot.

µ

Experiment

The confidence interval then reveals interesting properties. If we
build a 95% confidence interval around an unknown parameter, then
this means that:

1. we are 95% certain the parameter is in that range.

2. if we obtain 100 samples, 95 of them will have a parameter in that
range.

3. there is a 5% chance we are wrong and the parameter is outside
that range (either higher or lower).

Sampling distributions

As a reminder, when picking a sample out of a population, then we
say that the sample is distributed with some sampling distribution.
For convenience, let us focus on the case of trying to estimate the un-
known mean µ of a population X: the population is distributed with
some distribution and mean µ (unknown) and variance σ2 (possibly
known).

To estimate µ, we resort to collecting a sample X1, X2, . . . , Xn and
calculate the sample average X = X1+X2+...+Xn

n . Recall that the sam-
ple average is a random variable, distributed with some sampling
distribution with:

• expectation E
[
X
]
= µ.

• variance Var
[
X
]
= σ2

n .

Let’s distinguish between two cases:

1. X is normally distributed.

2. X is not normally distributed.
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If X is normally distributed, the X is also normally distributed
with mean µ and variance σ2/n. On the other hand, if X is not nor-
mally distributed, then X is normally distributed only if the sample
size is large enough (due to the central limit theorem).

Let us assume that one of the above two conditions hold. Then:

• P(X = µ) = 0 – X is a random variable and the probability it is
exactly equal to some other value is zero.

• P(X ≥ µ) = 0.5 – due to the symmetry of the normal distribution.

• P(X ≤ µ) = 0.5 – due to the symmetry of the normal distribution.

Recall that in some of our previous worksheets, we had already
identified that for a normally distributed random variable, we can
calculate the probability of a range of values around the mean as: 74 74 See Worksheet 8, Questions 7-8-9.

P(µ− r ≤ X ≤ µ + r) = 2Φ
( r

σ

)
− 1

Say, we were looking to build a 95% confidence interval, that would
translate to:

P(µ− r ≤ X ≤ µ + r) = 2Φ
( r

σ

)
− 1 = 0.95 =⇒

=⇒ 2Φ
( r

σ

)
= 1.95 =⇒ Φ

( r
σ

)
= 0.975.

Hence, r
σ has to be the value that leads to 0.975... Let’s keep that in

the back of our minds for now.

Single population confidence intervals

Before we proceed to the next calculations, we provide an overview
of where we are headed at:

Confidence

intervals

Population

mean

Population

variance

Population

proportion

Normal, known

σ

Normal, un-

known σ

Non-normal,

large sample

Normal distribu-

tion

Normal distribu-

tion

Non-normal,

large sample

Non-normal,

large sample

In all of them we assume the existence of one population with
some unknown parameter (the mean, the variance, a proportion). To
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estimate the unknown parameter, we collect a sample, estimate the
unknown parameter based on it and we create an interval around it.
We begin with the simplest case: the mean.

Population mean confidence intervals

Assume X is a population with unknown mean. We have collected a
sample X1, X2, . . . , Xn to estimate the mean. As we have discussed in
previous classes, the sample average X is an unbiased estimator for
the unknown mean. But what should be the interval around it?

Confidence

intervals

Population

mean

Population

variance

Population

proportion

Normal, known

σ

Normal, un-

known σ

Non-normal,

large sample

Normal distribu-

tion

Normal distribu-

tion

Non-normal,

large sample

Non-normal,

large sample

Let us assume that we know X to be normally distributed. And
while we are missing the true population mean µ we know its vari-
ance σ2 (or its standard deviation σ).

Recall that we are looking for L, U such that P(L ≤ X ≤ U) =

1− α. As X ∼ N
(
µ, σ2/n

)
, we have that Z = X−µ

σ/
√

n . Then, we may

write P(L ≤ X ≤ U) = 1− α as P(−zα/2 ≤ Z ≤ zα/2 = 1− α, where
zα/2 is called the critical z value and is found as P(Z > zα/2) = α

2 .
We show what these critical values represent in visual format in
Figures 68–71.

Finding critical values

Some common critical values:

• α = 10% =⇒ z0.05 = 1.645 as Φ(1.645) = 95% = 1− α/2.

• α = 5% =⇒ z0.025 = 1.96 as Φ(1.96) = 97.5% = 1− α/2.

• α = 1% =⇒ z0.005 = 2.576 as Φ(2.576) = 99.5% = 1− α/2.
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Try it yourselves! What is zα/2 for:

• α = 20% =⇒ z0.1 =

• α = 2% =⇒ z0.01 =

• α = 0.1% =⇒ z0.0005 =

Figure 68: α = 1%.

0.5%0.5%

Figure 69: α = 5%.

2.5%2.5%

Figure 70: α = 10%.

5%5%

Figure 71: α = 20%.

10%10%

Based on this discussion, and based on the symmetry of the nor-
mal distribution, we have our first confidence interval:

P(X− zα/2
σ√
n ≤ µ ≤ X + zα/2

σ√
n ) = 1− α

And consequently, we have a lower bound for our interval at L =

X− zα/2
σ√
n and an upper bound at U = X + zα/2

σ√
n .

Our first confidence interval

A class at UIUC gives out grades that are normally distributed
with known variance equal to 100 (i.e., σ = 10). Build a 95%
confidence interval for the mean of the class grades, assuming
that in the previous 8 semesters, the average has been a 77.

First, a 95% confidence interval implies that α = 0.05. Hence,
we are looking at zα/2 = z0.025 = 1.96. Then our interval will
be

[L, U] =
[
77− 1.96 · 10/

√
8, 77 + 1.96 · 10/

√
8
]
= [70.07, 83.93] .

Let us move on to the second part of our discussion about means.
What if we know that X is normally distributed but we have no idea
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what the variance or standard deviation is?

Confidence

intervals

Population

mean

Population

variance

Population

proportion

Normal, known

σ

Normal, un-

known σ

Non-normal,

large sample

Normal distribu-

tion

Normal distribu-

tion

Non-normal,

large sample

Non-normal,

large sample

Since we do not know σ, we need to estimate it. And what better
way to estimate σ other than using the sample standard deviation s!
What is the big deal? Can’t we just do everything we did earlier, and
simply use s instead of σ?

The short answer is no. Unfortunately the statistic X−µ

s/
√

n which
was earlier normally distributed because we knew σ is not any more.
Replacing σ with s leads to the statistic to be distributed with the
so-called Student’s T distribution. More specifically, we write that

T = X−µ

s/
√

n is distributed following a Student’s T distribution with
n− 1 degrees of freedom.

What kind of name is that? The distribution was introduced by W.S.
Gosset, who published his findings under the fake name “Student”.
This happened because the Guinness brewery (where he was em-
ployed at that time) did not allow its employees to publish their
findings.

The distribution looks eerily similar to the normal distribution:

−3 −2 −1 0 1 2 3

n = 2
n = 4

n = 10
n = 50

It is symmetric, but it has thicker tails. As the degrees of freedom
increase, then it starts looking more and more like the actual normal
distribution. Observe how for large values of n (say, n → ∞) the z
and the t values are identical!

Finally, just like the normal distribution, we may calculate any
value we are interested in by looking up a table of values. The table
is offered in the last page of the notes for convenience.
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Similarly to before then, after replacing z (normal distribution)
with t (Student’s T distribution) values and replacing σ (known stan-
dard deviation) with s (sample standard deviation), we get:

P(X− tα/2,n−1
s√
n ≤ µ ≤ X + tα/2,n−1

s√
n ) = 1− α

And consequently, we have a lower bound for our interval at L =

X− tα/2,n−1
s√
n and an upper bound at U = X + tα/2,n−1

s√
n .

Finding critical values for the T distribution

Some critical values for the T distribution:

• t0.025,15 = 2.131

• t0.05,10 = 1.812

• t0.05,25 = 1.708

• t0.10,5 = 1.476

STUDENT’S t CRITICAL VALUES

ν 0.4 0.33 0.25 0.2 0.125 0.1 0.05 0.025 0.01 0.005 0.001

1 0.325 0.577 1.000 1.376 2.414 3.078 6.314 12.706 31.821 63.657 318.31

5 0.267 0.457 0.727 0.920 1.301 1.476 2.015 2.571 3.365 4.032 5.893

10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144

15 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733

25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450

∞ 0.253 0.431 0.674 0.842 1.150 1.282 1.645 1.960 2.326 2.576 3.090

Another confidence interval

The same class at UIUC gives out grades that are normally
distributed with unknown variance; we have observe that over
the last 8 semesters the sample variance was equal to 100 (i.e.,
s = 10). Build a 95% confidence interval for the mean of the
class grades, assuming that in the previous 8 semesters, the
average has been a 77.

We still use α = 0.05. Now, though, we are looking at tα/2,7 =

t0.025,7 = 2.365. Finally, our interval will be

[L, U] =
[
77− 2.365 · 10/

√
8, 77 + 2.365 · 10/

√
8
]
= [68.64, 85.36] .

Note how the confidence interval has been extended, due to the
fact that we do not know what σ is.
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For the last case, we will be assuming a general distribution (not
necessarily normal) with known or unknown σ: however we also
assume the existence of a large enough sample (say, n ≥ 30).

Confidence

intervals

Population

mean

Population

variance

Population

proportion

Normal, known

σ

Normal, un-

known σ

Non-normal,

large sample

Normal distribu-

tion

Normal distribu-

tion

Non-normal,

large sample

Non-normal,

large sample

This case is very similar to the first one. If the sample is big
enough, then the central limit theorem applies and the average X
is still normally distributed. If we know σ, we may use it in our cal-
culations; if we do not, then we replace it with the sample standard
deviation s. All in all:

P(X− zα/2
s√
n ≤ µ ≤ X + zα/2

s√
n ) = 1− α

Consequently, the confidence interval is given as[
X− zα/2

s√
n

, X + zα/2
s√
n

]
.

Extensions In all of our previous discussion, we assumed two-sided
confidence intervals. However, in some instance we only care about
the one side. Consider the following examples:

• contamination levels (only interested if they are too high);

• grades (only interested if they are too low);

• cholesterol levels (only interested if they are too high);

• and others.

In these cases, we want to build one-sided confidence intervals
that look like

[L,+∞) or (−∞, U] .

What is the repercussion of having one side rather than two sides?
Recall that we choose a level of confidence 1 − α. With two sides,
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Figure 72: α = 5% (upper bound only).

5%

Figure 73: α = 5% (lower bound only).

5%

Figure 74: α = 10% (upper bound only).

10%

Figure 75: α = 10% (upper bound only).

10%

this was divided evenly on both sides! Now, all of α gets on one side.
Visually, we have the situation of Figures 72–75.

This, in essence, is all that changes: instead of zα/2 or tα/2,n−1 use
zα or tα,n−1 and only calculate a lower or an upper bound as needed.

Cholesterol testing

When testing for cholesterol the sample that a patient has
given is divided into 5 parts, each of which is tested individ-
ually: assume that each individual test has known σ = 8. The
average measurement was 194; the upper limit out of which
the patient may need to start being careful is 200. What is the
two-sided 95% confidence interval? What is the one-sided
upper 95% confidence interval?
We know the standard deviation, so we are in the first of the
three cases we discussed. Hence, the average measurement X
is normally distributed.

• Two-sided: zα/2 = z0.025 = 1.96.

[L, U] =
[
194− 1.96 · 8/

√
5, 194 + 1.96 · 8/

√
5
]
= [186.99, 201.01] .

• One-sided: zα = z0.05 = 1.645.

(−∞, U] =
(
−∞, 194 + 1.645 · 8/

√
5
]
= (−∞, 199.89] .

Let’s see the implication of this. The doctor cannot be 95% cer-
tain that your cholesterol level is below 200 units if they want
to give you a two-sided interval. They can be 95% certain
though if they do a one-sided interval!
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Another very interesting topic has to do with the question: how
big a sample guarantees me a small error? The question has two
components to address. What do we define as error? And what do
we define as small error?

The estimation error is the absolute difference between the mea-
sured and the true value:

E =
∣∣X− µ

∣∣ ≤ zα/2
σ√
n

.

The precision error is the width of the confidence interval:

2zα/2
σ√
n

.

Increasing n will have a positive effect on both errors: they go
down when we collect more samples. But, of course, the natural
question is how many samples are enough? Enough for what? This leads
us to the following result.

For sample size n =
(

zα/2σ
E

)2
, the estimation error is at most E.

For a one-sided interval, the estimation error is zα
σ√
n and we need

sample size n =
( zασ

E
)2 for the error to be at most E.

As we are discussing the number of samples to obtain, we always
round up the number we get if it is fractional.

Cholesterol testing

The doctor from earlier would like to get as many samples
as necessary to be sure that your true cholesterol levels are
within a estimation error of 7 units. How many samples
should they take for a 95% two-sided and a 95% upper-sided
(one-sided) confidence interval? Recall that we know σ = 8.

• two-sided: zα/2 = z0.025 = 1.96:

n =

(
1.96 · 8

7

)2
= 5.0176→ 6.

• one-sided: zα = z0.05 = 1.645:

n =

(
1.645 · 8

7

)2
= 3.5344→ 4.
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NORMAL CUMULATIVE DISTRIBUTION FUNCTION (Φ(z))

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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STUDENT’S t CRITICAL VALUES

ν 0.4 0.33 0.25 0.2 0.125 0.1 0.05 0.025 0.01 0.005 0.001

1 0.325 0.577 1.000 1.376 2.414 3.078 6.314 12.706 31.821 63.657 318.31

2 0.289 0.500 0.816 1.061 1.604 1.886 2.920 4.303 6.965 9.925 22.327

3 0.277 0.476 0.765 0.978 1.423 1.638 2.353 3.182 4.541 5.841 10.215

4 0.271 0.464 0.741 0.941 1.344 1.533 2.132 2.776 3.747 4.604 7.173

5 0.267 0.457 0.727 0.920 1.301 1.476 2.015 2.571 3.365 4.032 5.893

6 0.265 0.453 0.718 0.906 1.273 1.440 1.943 2.447 3.143 3.707 5.208

7 0.263 0.449 0.711 0.896 1.254 1.415 1.895 2.365 2.998 3.499 4.785

8 0.262 0.447 0.706 0.889 1.240 1.397 1.860 2.306 2.896 3.355 4.501

9 0.261 0.445 0.703 0.883 1.230 1.383 1.833 2.262 2.821 3.250 4.297

10 0.260 0.444 0.700 0.879 1.221 1.372 1.812 2.228 2.764 3.169 4.144

11 0.260 0.443 0.697 0.876 1.214 1.363 1.796 2.201 2.718 3.106 4.025

12 0.259 0.442 0.695 0.873 1.209 1.356 1.782 2.179 2.681 3.055 3.930

13 0.259 0.441 0.694 0.870 1.204 1.350 1.771 2.160 2.650 3.012 3.852

14 0.258 0.440 0.692 0.868 1.200 1.345 1.761 2.145 2.624 2.977 3.787

15 0.258 0.439 0.691 0.866 1.197 1.341 1.753 2.131 2.602 2.947 3.733

16 0.258 0.439 0.690 0.865 1.194 1.337 1.746 2.120 2.583 2.921 3.686

17 0.257 0.438 0.689 0.863 1.191 1.333 1.740 2.110 2.567 2.898 3.646

18 0.257 0.438 0.688 0.862 1.189 1.330 1.734 2.101 2.552 2.878 3.610

19 0.257 0.438 0.688 0.861 1.187 1.328 1.729 2.093 2.539 2.861 3.579

20 0.257 0.437 0.687 0.860 1.185 1.325 1.725 2.086 2.528 2.845 3.552

21 0.257 0.437 0.686 0.859 1.183 1.323 1.721 2.080 2.518 2.831 3.527

22 0.256 0.437 0.686 0.858 1.182 1.321 1.717 2.074 2.508 2.819 3.505

23 0.256 0.436 0.685 0.858 1.180 1.319 1.714 2.069 2.500 2.807 3.485

24 0.256 0.436 0.685 0.857 1.179 1.318 1.711 2.064 2.492 2.797 3.467

25 0.256 0.436 0.684 0.856 1.178 1.316 1.708 2.060 2.485 2.787 3.450

26 0.256 0.436 0.684 0.856 1.177 1.315 1.706 2.056 2.479 2.779 3.435

27 0.256 0.435 0.684 0.855 1.176 1.314 1.703 2.052 2.473 2.771 3.421

28 0.256 0.435 0.683 0.855 1.175 1.313 1.701 2.048 2.467 2.763 3.408

29 0.256 0.435 0.683 0.854 1.174 1.311 1.699 2.045 2.462 2.756 3.396

30 0.256 0.435 0.683 0.854 1.173 1.310 1.697 2.042 2.457 2.750 3.385

40 0.255 0.434 0.681 0.851 1.167 1.303 1.684 2.021 2.423 2.704 3.307

50 0.255 0.433 0.679 0.849 1.164 1.299 1.676 2.009 2.403 2.678 3.261

60 0.254 0.433 0.679 0.848 1.162 1.296 1.671 2.000 2.390 2.660 3.232

∞ 0.253 0.431 0.674 0.842 1.150 1.282 1.645 1.960 2.326 2.576 3.090
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21. Confidence intervals for
single population variances and
proportions

Learning objectives

After lectures 20–23, we will be able to:

• Build confidence intervals for:

– unknown means;

– unknown variances;

– unknown proportions.

• Build confidence intervals for:

– the difference between two unknown means;

– the ratio between two unknown variances;

– the difference between two unknown proportions.

• Understand the effect of Type I error, or probability α.

• Calculate errors and interval margins.

• Select appropriate sample sizes to keep errors below a limit.

Single population confidence intervals

Continuing from last lecture, we are still building confidence in-
tervals for a single population. In this lecture, though, we will talk
about creating confidence intervals for unknown variances of nor-
mally distributed populations, as well as unknown proportions.

Confidence

intervals

Population

mean

Population

variance

Population

proportion

Normal, known

σ

Normal, un-

known σ

Non-normal,

large sample

Normal distribu-

tion

Normal distribu-

tion

Non-normal,

large sample

Non-normal,

large sample
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Population variance confidence intervals

Assume X is a normally distributed population with unknown vari-
ance. We have collected a sample X1, X2, . . . , Xn to estimate the vari-
ance. As we have discussed in previous classes, the sample variance
s2 is an unbiased estimator for the unknown variance. But what
should be the interval around it? This is our focus:

Confidence

intervals

Population

mean

Population

variance

Population

proportion

Normal, known

σ

Normal, un-

known σ

Non-normal,

large sample

Normal distribu-

tion

Normal distribu-

tion

Non-normal,

large sample

Non-normal,

large sample

Once again, we are looking for L, U such that P(L ≤ s2 ≤ U) =

1− α. However, we first need to discuss what s2 is distributed as.

Sampling distribution for σ2

Recall that we have a good estimator for the population variance σ2:

• pick a sample X1, X2, . . . , Xn.

• estimate the variance by the sample variance: s2.

We have already proven that E
[
s2] = σ2. The question now is: what

is the sampling distribution of s2? It turns out it follows the χ2 distri-
bution. 75 The distribution is formally defined as follows: 75 Pronounced “Chi-Squared”.

Let X1, X2, . . . , Xn be a sample from a normally distributed
population with N

(
µ, σ2). Then, the random variable

X2 =
(n− 1) s2

σ2

is distributed following a χ2 distribution
with n− 1 degrees of freedom.

It is the sum of the squares of n − 1 normally distributed random
variables. For a visual representation see Figure 76.

Very similarly to our previous operations for other confidence
intervals, we again focus on identifying critical values for the χ2-
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Figure 76: Here we present the χ2 distribution for three different degrees of freedom
equal to k = 5, 10, 15. Note how the distribution is not symmetric.
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distribution, that is values such that:

P
(

X2 ≥ χ2
α,k

)
= α.

Luckily, we again may use a table containing these values, referred to
as (you guessed it) a χ2-table.

Practice with the χ2 distribution

For example, let us practice with some values:

• χ2
0.05,5 = 11.07

• χ2
0.1,5 = 9.236

• χ2
0.9,20 = 12.443

• χ2
0.95,55 = 38.958

Here are some values taken from the tables in the last two
pages. These should help with finding the above critical val-
ues. Again, we look at the rows for the degrees of freedom,
and at the columns for the percentages.

ν 99% 97.5% 95% 90% 10% 5% 2.5% 1%
1 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635

5 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086

10 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209

20 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566

55 33.570 36.398 38.958 42.060 68.796 73.311 77.380 82.292
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Once more, assume we have a sample X1, X2, . . . , Xn. Then:

X2 =
(n− 1) s2

σ2 ∼ χ2
n−1

and hence:

P
(

χ2
1−α/2,n−1 ≤ X2 ≤ χ2

α/2,n−1

)
= 1− α.

By converting back to the σ2 space, we get:

P

(
(n− 1) s2

χ2
α/2,n−1

≤ σ2 ≤ (n− 1) s2

χ2
1−α/2,n−1

)
,

where the two bounds are (in [L, U] form):

L =
(n− 1) s2

χ2
α/2,n−1

U =
(n− 1) s2

χ2
1−α/2,n−1

A couple of notes of caution for when building a variance confidence
interval:

1. There are no actual squares involved! You do not “square” the
value: this is simply the name of the distribution!

2. Notice that the critical values are not symmetric: in the normal
and the t distribution, the values are symmetric.

• For the lower bound, use χ2
α/2,n−1;

• For the upper bound, use χ2
1−α/2,n−1.

3. Because of the lack of symmetry in the critical values, there is no
symmetry in the bounds.

• On top of that, you are dividing the estimator by a value (rather
than adding it and subtracting it to the estimator, which was the
case earlier).

Our first variance confidence interval

An engineer is concerned about soil contamination, which is
assumed to be normally distributed. They pick 15 soil samples
and measure the contaminant levels finding that X = 13.7
ppm and s = 3.15 ppm. You may assume that the soil contam-
ination level has unknown mean and variance. What is:

1. a 95% confidence interval for µ?

2. a 95% confidence interval for σ2?
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A mean confidence interval first

Wait! The first part is for a mean confidence interval. Let us
do a quick activity then to find it. We have:

1. normally distributed population;

2. unknown variance.

Hence, we need values from the t-table. More specifically, we
need:

• t0.025,14 = 2.145 to build the mean confidence interval.

This leads to an interval that:

µ ∈
[

13.7− 2.145 · 3.15√
15

, 13.7 + 2.145 · 3.15√
15

]
= [11.96, 15.44] .

And a variance confidence interval next

For the variance confidence interval, we look at the χ2 table
(look at the last two pages of this set of nodes) to find the two
values we need:

• χ2
0.025,14 = 26.119, χ2

0.975,14 = 5.629.

The interval then is found as:

σ2 ∈
[

14 · 3.152

26.119
,

14 · 3.152

5.629

]
= [5.32, 24.68]

Note how it is not at all symmetric!

Population proportion confidence intervals
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Confidence

intervals

Population

mean

Population

variance

Population

proportion

Normal, known

σ

Normal, un-

known σ

Non-normal,

large sample

Normal distribu-

tion

Normal distribu-

tion

Non-normal,

large sample

Non-normal,

large sample

Let us see the last case now. We begin with a motivational exam-
ple.

Policy making

Assume we are deciding for a new law, and want to make
sure that the population of a city (estimated at 100,000) sup-
ports it. Moreover, assume that support means 50% or more
people like the law.

What can we do?

• Ask a random set of n people whether they support the
law.

• Count how many support the law. Let them be X.

• Estimate p̂ = X
n .

Suppose p̂ = 0.6 after asking n = 30 people.
Should we enact the law? Are we 95% sure the majority supports
it?

In the previous example, we have that X ∼ binomial(n, p). When n
is big enough, then X is approximated by a normal distribution with
mean np and variance np (1− p). 76 Let us state this more formally. 76 Why is that?

Definition 61 (Normal approximation to the binomial distribution)
Assume that X is binomially distributed with parameters n, p. Further as-
sume that np > 5 and n(1− p) > 5. Then, X can be written as a normally
distributed random variable N (np, np(1− p)).

Because of that, the statistic Z = X−np√
np(1−p)

follows the standard

normal distribution (i.e., N (0, 1)). Note how we can rewrite Z as
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follows:
Z =

X− np√
np(1− p)

=
p̂− p√

p(1−p)
n

∼ N (0, 1) .

Now, let us derive the confidence intervals. Let p̂ be the proportion
of observations that are of interest (for example, the number of peo-
ple who agree with a statement versus the total number n of people
asked). Then:

p̂− zα/2

√
p̂ (1− p̂)

n
≤ p ≤ p̂ + zα/2

√
p̂ (1− p̂)

n

Policy making

We asked 30 people and 18 said they support the law. What is
the 95%-confidence interval for the true proportion supporting
the law in the city?

0.6− 1.96 ·
√

0.6 · 0.4
30

≤p ≤ 0.6 + 1.96 ·
√

0.6 · 0.4
30

=⇒

0.4247 ≤p ≤ 0.7753.

Bounding the error

The estimation error for our point estimate p̂ is

E = | p̂− p| .

Assume we are asked to calculate a 100 · (1− α)% confidence interval.
Then, its error is bounded above by:

E ≤ zα/2

√
p(1− p)/n.

Expectedly, as n increases, the error bound goes down. But the
real question is: how big should n be for the error to be at a pre-
specified level? We may calculate this as:

n ≥
( zα/2

E

)2
p(1− p).

However... the true proportion p is unknown – but we can show
that p(1− p) ≤ 0.25 77. Hence, we use just that to finally get that: 77 This is the maximum value for

p · (1− p) for any value of p [0, 1].

n ≥ 0.25
(

zα/2
E

)2
.
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Policy making

In the previous example, we want to have a 95%-confidence
interval with an error of at most E = 5%. How many people
should we ask?

95%-confidence level =⇒ z0.025 = 1.96. Hence, we get:

n ≥ 0.25 ·
(

1.96
0.05

)2
= 384.16 =⇒ n = 385.

We should ask at least 385 people.

Observe that the number does not depend on the specific popula-
tion, but only on the confidence level and the pre-specified error.
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ν 99.9% 99.5% 99.0% 97.5% 95.0% 90.0% 87.5% 80.0% 75.0% 66.7% 50.0%
1 0.000 0.000 0.000 0.001 0.004 0.016 0.025 0.064 0.102 0.186 0.455

2 0.002 0.010 0.020 0.051 0.103 0.211 0.267 0.446 0.575 0.811 1.386

3 0.024 0.072 0.115 0.216 0.352 0.584 0.692 1.005 1.213 1.568 2.366

4 0.091 0.207 0.297 0.484 0.711 1.064 1.219 1.649 1.923 2.378 3.357

5 0.210 0.412 0.554 0.831 1.145 1.610 1.808 2.343 2.675 3.216 4.351

6 0.381 0.676 0.872 1.237 1.635 2.204 2.441 3.070 3.455 4.074 5.348

7 0.598 0.989 1.239 1.690 2.167 2.833 3.106 3.822 4.255 4.945 6.346

8 0.857 1.344 1.646 2.180 2.733 3.490 3.797 4.594 5.071 5.826 7.344

9 1.152 1.735 2.088 2.700 3.325 4.168 4.507 5.380 5.899 6.716 8.343

10 1.479 2.156 2.558 3.247 3.940 4.865 5.234 6.179 6.737 7.612 9.342

11 1.834 2.603 3.053 3.816 4.575 5.578 5.975 6.989 7.584 8.514 10.341

12 2.214 3.074 3.571 4.404 5.226 6.304 6.729 7.807 8.438 9.420 11.340

13 2.617 3.565 4.107 5.009 5.892 7.042 7.493 8.634 9.299 10.331 12.340

14 3.041 4.075 4.660 5.629 6.571 7.790 8.266 9.467 10.165 11.245 13.339

15 3.483 4.601 5.229 6.262 7.261 8.547 9.048 10.307 11.037 12.163 14.339

16 3.942 5.142 5.812 6.908 7.962 9.312 9.837 11.152 11.912 13.083 15.338

17 4.416 5.697 6.408 7.564 8.672 10.085 10.633 12.002 12.792 14.006 16.338

18 4.905 6.265 7.015 8.231 9.390 10.865 11.435 12.857 13.675 14.931 17.338

19 5.407 6.844 7.633 8.907 10.117 11.651 12.242 13.716 14.562 15.859 18.338

20 5.921 7.434 8.260 9.591 10.851 12.443 13.055 14.578 15.452 16.788 19.337

21 6.447 8.034 8.897 10.283 11.591 13.240 13.873 15.445 16.344 17.720 20.337

22 6.983 8.643 9.542 10.982 12.338 14.041 14.695 16.314 17.240 18.653 21.337

23 7.529 9.260 10.196 11.689 13.091 14.848 15.521 17.187 18.137 19.587 22.337

24 8.085 9.886 10.856 12.401 13.848 15.659 16.351 18.062 19.037 20.523 23.337

25 8.649 10.520 11.524 13.120 14.611 16.473 17.184 18.940 19.939 21.461 24.337

26 9.222 11.160 12.198 13.844 15.379 17.292 18.021 19.820 20.843 22.399 25.336

27 9.803 11.808 12.879 14.573 16.151 18.114 18.861 20.703 21.749 23.339 26.336

28 10.391 12.461 13.565 15.308 16.928 18.939 19.704 21.588 22.657 24.280 27.336

29 10.986 13.121 14.256 16.047 17.708 19.768 20.550 22.475 23.567 25.222 28.336

30 11.588 13.787 14.953 16.791 18.493 20.599 21.399 23.364 24.478 26.165 29.336

35 14.688 17.192 18.509 20.569 22.465 24.797 25.678 27.836 29.054 30.894 34.336

40 17.916 20.707 22.164 24.433 26.509 29.051 30.008 32.345 33.660 35.643 39.335

45 21.251 24.311 25.901 28.366 30.612 33.350 34.379 36.884 38.291 40.407 44.335

50 24.674 27.991 29.707 32.357 34.764 37.689 38.785 41.449 42.942 45.184 49.335

55 28.173 31.735 33.570 36.398 38.958 42.060 43.220 46.036 47.610 49.972 54.335

60 31.738 35.534 37.485 40.482 43.188 46.459 47.680 50.641 52.294 54.770 59.335
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ν 40.0% 33.3% 25.0% 20.0% 12.5% 10.0% 5.0% 2.5% 1.0% 0.5% 0.1%
1 0.708 0.936 1.323 1.642 2.354 2.706 3.841 5.024 6.635 7.879 10.828

2 1.833 2.197 2.773 3.219 4.159 4.605 5.991 7.378 9.210 10.597 13.816

3 2.946 3.405 4.108 4.642 5.739 6.251 7.815 9.348 11.345 12.838 16.266

4 4.045 4.579 5.385 5.989 7.214 7.779 9.488 11.143 13.277 14.860 18.467

5 5.132 5.730 6.626 7.289 8.625 9.236 11.070 12.833 15.086 16.750 20.515

6 6.211 6.867 7.841 8.558 9.992 10.645 12.592 14.449 16.812 18.548 22.458

7 7.283 7.992 9.037 9.803 11.326 12.017 14.067 16.013 18.475 20.278 24.322

8 8.351 9.107 10.219 11.030 12.636 13.362 15.507 17.535 20.090 21.955 26.125

9 9.414 10.215 11.389 12.242 13.926 14.684 16.919 19.023 21.666 23.589 27.877

10 10.473 11.317 12.549 13.442 15.198 15.987 18.307 20.483 23.209 25.188 29.588

11 11.530 12.414 13.701 14.631 16.457 17.275 19.675 21.920 24.725 26.757 31.264

12 12.584 13.506 14.845 15.812 17.703 18.549 21.026 23.337 26.217 28.300 32.910

13 13.636 14.595 15.984 16.985 18.939 19.812 22.362 24.736 27.688 29.819 34.528

14 14.685 15.680 17.117 18.151 20.166 21.064 23.685 26.119 29.141 31.319 36.123

15 15.733 16.761 18.245 19.311 21.384 22.307 24.996 27.488 30.578 32.801 37.697

16 16.780 17.840 19.369 20.465 22.595 23.542 26.296 28.845 32.000 34.267 39.252

17 17.824 18.917 20.489 21.615 23.799 24.769 27.587 30.191 33.409 35.718 40.790

18 18.868 19.991 21.605 22.760 24.997 25.989 28.869 31.526 34.805 37.156 42.312

19 19.910 21.063 22.718 23.900 26.189 27.204 30.144 32.852 36.191 38.582 43.820

20 20.951 22.133 23.828 25.038 27.376 28.412 31.410 34.170 37.566 39.997 45.315

21 21.991 23.201 24.935 26.171 28.559 29.615 32.671 35.479 38.932 41.401 46.797

22 23.031 24.268 26.039 27.301 29.737 30.813 33.924 36.781 40.289 42.796 48.268

23 24.069 25.333 27.141 28.429 30.911 32.007 35.172 38.076 41.638 44.181 49.728

24 25.106 26.397 28.241 29.553 32.081 33.196 36.415 39.364 42.980 45.559 51.179

25 26.143 27.459 29.339 30.675 33.247 34.382 37.652 40.646 44.314 46.928 52.620

26 27.179 28.520 30.435 31.795 34.410 35.563 38.885 41.923 45.642 48.290 54.052

27 28.214 29.580 31.528 32.912 35.570 36.741 40.113 43.195 46.963 49.645 55.476

28 29.249 30.639 32.620 34.027 36.727 37.916 41.337 44.461 48.278 50.993 56.892

29 30.283 31.697 33.711 35.139 37.881 39.087 42.557 45.722 49.588 52.336 58.301

30 31.316 32.754 34.800 36.250 39.033 40.256 43.773 46.979 50.892 53.672 59.703

35 36.475 38.024 40.223 41.778 44.753 46.059 49.802 53.203 57.342 60.275 66.619

40 41.622 43.275 45.616 47.269 50.424 51.805 55.758 59.342 63.691 66.766 73.402

45 46.761 48.510 50.985 52.729 56.052 57.505 61.656 65.410 69.957 73.166 80.077

50 51.892 53.733 56.334 58.164 61.647 63.167 67.505 71.420 76.154 79.490 86.661

55 57.016 58.945 61.665 63.577 67.211 68.796 73.311 77.380 82.292 85.749 93.168

60 62.135 64.147 66.981 68.972 72.751 74.397 79.082 83.298 88.379 91.952 99.607
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22. Review on confidence
intervals
Quick review

On these last two lectures, we have begun a discussion on confidence
intervals:

• for the unknown mean µ of a population.

• for the unknown variance σ2 of a normally distributed population.

• for the unknown proportion p of a population.

Here, we’ll do a quick review and try to proactively address ques-
tions before you start creating your own confidence intervals. We
also provide you with a series of interactive activities you can use to
practice confidence intervals.

As a reminder, here is a visual representation of what we have
seen so far:

Confidence

intervals

Population

mean

Population

variance

Population

proportion

Normal, known

σ ⇒ z
Normal, un-

known σ ⇒ t
Non-normal,

large sample

⇒ z

Normal distribu-

tion
Normal distribu-

tion⇒ χ2

Non-normal,

large sample
Non-normal,

large sample

⇒ z

What does a confidence interval reveal?

Say we are building a 1− α confidence interval for some unknown
parameter θ.

• [a, b]: two-sided confidence interval, implying that I am confident
with probability 1− α that θ is between a and b.

• (−∞, b]: one-sided confidence interval (upper), implying that I
am confident with probability 1− α that θ ≤ b.
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• [a,+∞): one-sided confidence interval (lower), implying that I am
confident with probability 1− α that θ ≥ a.

We build two confidence intervals for the same parameter over
the same sample.
Quick check #1: The first is a 95% confidence interval; the
second is a 99% one. Which one will be over a larger range?
Quick check #2: The first one is (upper) one-sided (−∞, U1];
the second is two-sided [L2, U2]. Then, we claim that U1 < U2.

True or False

Reviewing critical values

To find a confidence interval, we need a critical value for our sam-
pling distribution. Formally: fα is the critical value of some popula-
tion X with distribution function f (x), if P(X > fα) = α. For ex-
ample, if X follows the standard normal distribution (the “z table”),
then: P(X > zα) = α.

zα

1− α α

zα is the value at the z-table above which we get probability α!
Note how this also means that Φ (zα) = 1− α:

z0.25 = 0.674

75% 25%

z0.05 = 1.645

95% 5%
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Reviewing confidence intervals for means

The summary of our strategy to construct a confidence interval on
the unknown mean of a population is as follows.

1. First, collect a sample and calculate its average, X.

2. Then, we separate between cases.

(a) Normally distributed population, with known variance σ2.

• Find zα/2 (two-sided) or zα (one-sided).

•
[

X− zα/2
σ√
n , X + zα/2

σ√
n

]
•
[

X− zα
σ√
n ,+∞

)
,
(
−∞, X + zα

σ√
n

]
(b) Normally distributed population, with unknown variance.

• Do not have σ2: we estimate it by the sample variance, s2.

• Find tα/2,n−1 (two-sided) or tα,n−1 (one-sided).

•
[

X− tα/2,n−1
s√
n , X + tα/2,n−1

s√
n

]
•
[

X− tα,n−1
s√
n ,+∞

)
,
(
−∞, X + tα,n−1

s√
n

]
(c) Not normally distributed population, but large sample (n ≥

30).

• May not have σ2: if not, we use sample variance, s2.

• Find zα/2 (two-sided) or zα (one-sided).

•
[

X− zα/2
s√
n , X + zα/2

s√
n

]
•
[

X− zα
s√
n ,+∞

)
,
(
−∞, X + zα

s√
n

]
That said, what does a mean confidence interval reveal? Say we

are building a 1− α confidence interval for some unknown mean µ.
Then:

• [a, b]: two-sided confidence interval, implying that I am confident
with probability 1− α that the true mean µ is between a and b.

• (−∞, b]: one-sided confidence interval (upper), implying that I
am confident with probability 1− α that for the true mean µ, we
have µ ≤ b.

• [a,+∞): one-sided confidence interval (lower), implying that I am
confident with probability 1− α that for the true mean µ, we have
µ ≥ a.
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Quick check: We build a 95% confidence interval for the un-
known mean of a population and find it to be [10, 20]. Then,
I am confident with probability 95% that all values in the
population are between 10 and 20.

True or False

Reviewing confidence intervals for variances

First of all, we need to have a normally distributed population.
Then, the strategy is as follows.

1. First, collect a sample and calculate its sample variance, s2.

2. Then, find χ2
α/2,n−1, χ2

1−α/2,n−1 (two-sided) or χ2
α,n−1 (one-sided,

lower), χ2
1−α,n−1 (one-sided, upper).

3. Finally, build the confidence interval:

•
[
(n−1)s2

χ2
α/2,n−1

, (n−1)s2

χ2
1−α/2,n−1

]
•
[
(n−1)s2

χ2
α,n−1

,+∞
)

,
[

0, (n−1)s2

χ2
1−α,n−1

]
A couple of notes of caution:

• χ2 is not symmetric. You need two values for a two-sided confi-
dence interval!

• There are no actual squares involved! This is simply the name of
the distribution.

Confidence intervals for call centers

A call center is measuring the variance in their calls. We note
here that variance in the call duration is a common metric of
a successful call center: the smaller it is, the better the quality
of the service provided. They believe the call duration to be
normally distributed; a sample of n = 22 calls has revealed a
sample standard deviation equal to s = 1.7 minutes. What is
the 90% confidence interval of the unknown call variance?

• First: s2 = 1.72 = 2.89.

• Then: α = 10% =⇒ χ2
0.05,21 = 32.671 and χ2

0.95,21 = 11.591

• Finally:
[

21·2.89
32.671 , 21·2.89

11.591

]
⇒ [1.858, 5.236].
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Reviewing confidence intervals for proportions

Finally, let X be a binomially distributed population, such that np > 5
and n(1− p) > 5. In plain words, the assumption means that we have
identified more than 5 items that satisfy some condition and more
than 5 items that do not. Now, our strategy is as follows:

1. Calculate p̂ as the number of items that satisfy a condition of
interest versus the total number of items (that is, p̂ = x/n).

2. Find zα/2 (two-sided) or zα (one-sided).

3. Finally, the confidence intervals look like:

•
[

p̂− zα/2

√
p̂(1− p̂)

n , p̂ + zα/2

√
p̂(1− p̂)

n

]
•
(

p̂− zα

√
p̂(1− p̂)

n , 1
]

,
[

0, p̂ + zα

√
p̂(1− p̂)

n

]

Policy confidence intervals

We want to check whether the majority of students agrees
with a new rule for studying abroad. We have asked 38 stu-
dents; 13 agreed whereas 25 disagreed. What is the two-sided
95% confidence interval of the proportion of students who
agree?

• p̂ = 13/38 = 0.3421.

• α = 5% =⇒ z0.025 = 1.96.

•
[

13
38 − 1.96

√
13
38 ·

25
38

38 , 13
38 + 1.96

√
13
38 ·

25
38

38

]
⇒ [0.1913, 0.4929] .

A follow-up question from our last example here: are you 95%
certain that the majority disagrees with the rule?

Errors

We talked about two types of estimation errors: for means and for
proportions.

• Estimation error for means:

E =
∣∣X− µ

∣∣ ≤ zα/2
σ√
n

.

– Assume we want error at most E.



ie 300 253

– Then, pick sample size at least

n ≥
( zα/2σ

E

)2
.

• Estimation error for proportions:

E = | p̂− p| ≤ zα/2

√
p(1− p)/n.

– Assume we want error at most E.

– Then, pick sample size at least

n ≥ 0.25
( zα/2

E

)2
.

Proportion estimation error

Our plan is to implement a new Universal Design for Learn-
ing practice for flexible deadlines in the class. That said, in the
spirit of democracy, we want to make sure that most students
agree! Specifically, we want to find a two-sided 95% propor-
tion confidence interval with at most a 1% estimation error.
What sample size do they need?

• n ≥ 0.25 (1.96/0.01)2 = 9604.

Notice how this makes a 1% estimation error impossible in the
context of a class, as it is very, very difficult to find a regular
class with 9604 students! We would need to settle for fewer
students.
Additionally, recall that we would have had to round up if it
were a fractional number. See the next example also.

Mean estimation error

A data analyst wants to find a one-sided 90% mean confidence
interval for a normally distributed population with known
σ = 0.3 units. What sample size do they need for at most a 0.1
unit error?

• n ≥ (1.282 · 0.3/0.1)2 = 14.79→ n ≥ 15.

Interactive (and hopefully interesting?) activities you can do in the
classroom

Activity 1: ChatGPT and “rankings” or Top 10 ________
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1. Open ChatGPT (you will need an account to do that) and ask it to
list the top 10 “anything”.

• For example, you can use chefs, industrial engineers, children book
authors, painters.

• Then, count the number of female members in that group.

• Work in groups, collect the number of female members in the
list from at least another 4-5 people around you.

• Careful: make sure you compare apples to apples and collect
answers from people who used the same prompt (e.g., all of you
used “top 10 chefs” or “top 10 violinists”, etc.).

2. What is the 95% confidence interval of the proportion of female
people in the list provided?

Can we compare the confidence intervals from two different
prompts?

• What is the 95% confidence interval of the proportion of female
people in the list of “top chefs” versus in the list of “top violin-
ists”?

• Do they intersect?

Activity 2: planning for retirement
Say you suddenly are given $10,000. How much would you save

for retirement and how much would you keep for now? Assume that
your answer will look like: $10000− x to spend now while keeping
$x for retirement.

There is an interesting article that discusses how scientists used
fMRI imaging to check three situations. They took fMRI pictures of
people that were asked to think about:

1. themselves – fMRI 1.

2. a total stranger – fMRI 2.

3. themselves in 10 years – fMRI 3.
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We note that fMRI 2 and 3 were almost identical! So, how can we
check that for ourselves? We will need some app to help us “age”
ourselves. For example, AgingBooth is an iOS and Android app
that can take a picture and “age” it. There are other apps as well
(Snapchat has a filter that does that; FaceApp can do it; and many
others).

Then, our strategy for this activity is:

1. Have some friends use AgingBooth and then, after they see them-
selves in (say) 30-40 years, ask them to allocate $10,000 now and
for retiring.

2. Have some other friends not use AgingBooth and instead immedi-
ately ask them to allocate $10,000 now and for retiring.

3. Create the two confidence intervals for the average amount of
money that a person would put towards retirement based on their
answers.
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23. Confidence intervals for two
populations



Analysis of data
Chrysafis Vogiatzis

Learning objectives

After lectures 20–23, we will be able to:

• Build confidence intervals for:

– unknown means;

– unknown variances;

– unknown proportions.

• Build confidence intervals for:

– the difference between two unknown means;

– the ratio between two unknown variances;

– the difference between two unknown proportions.

• Understand the effect of Type I error, or probability α.

• Calculate errors and interval margins.

• Select appropriate sample sizes to keep errors below a limit.

Motivation: Do masks work?

There has been an ongoing discussion about whether mandating uni-
versal mask wearing curbs COVID-19. All politics aside, there was a
very interesting study coming from Kansas: apparently, counties that
mandated masks saw smaller increases (or decreases) in the onset
of new COVID-19 cases, than counties that did not mandate masks.
Could we prove that (within a given specified level of confidence)?

Motivation: Does IE 300 have more variable grades than IE 310?

When deciding a technical elective, we also look for how variable the
grading is; not only what the average is! A class that has an A- aver-
age is not necessarily “easier” or “more straightforward” than a class
that has a B average. Instead, we also want to see what the variances
are. The question we would like to answer then: how much more
variable is class A compared to class B? Or, to put it in confidence
interval terms, what is the ratio of variances between two populations
with 95% confidence?
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Two population confidence intervals

In this set of notes, we turn our focus to two different populations
and how they compare. More specifically, in this lecture we see confi-
dence intervals on:

1. the difference of two means, µ1 − µ2.

2. the difference between two proportions, p1 − p2.

3. the ratio of two variances, σ2
1

σ2
2

.

Why would we look at two populations? Well, in many practical
applications, we are given more than one populations to compare.
For example, we may want to compare the performance of a drug
in two groups of patients. At a similar vein, we may want to check
the differences in driving on ice between more (> 10 years) and
less experienced (0− 10 years) drivers. Finally, at a problem that we
can relate to in 2020, we may want to see how people living in two
different states vote?

One thing is for sure: in all these cases, it is imperative to create
confidence intervals for more than just one population.

Difference in means

Consider two normally distributed populations with unknown
means µ1, µ2. We are interested in quantifying the difference in their
means:

µ1 − µ2.

How about we try again what we did before? That is:

• Take a sample of size n1 from the first population and calculate the
sample average X1.

• Take a sample of size n2 from the second population and calculate
the sample average X2.

• Estimate µ1 − µ2 by X1 − X2.

This will be a good point estimate, for sure 78. But what about the 78 Why? Can you prove that?

confidence interval?

Difference in means of two populations with known variances

Before we get to the confidence intervals, let us define a new “kind”
of standard deviation.
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Definition 62 (Pooled standard deviation) Given two samples of sizes
n1, n2, with known respective standard deviations σ1, σ2, we define their
pooled standard deviation as:

σP =

√
(n1 − 1) σ2

1 + (n2 − 1) σ2
2

n1 + n2 − 2
.

With this definition, and keeping the same logic as in Lecture 20, we
get our first confidence interval:

X1 − X2 − zα/2σP

√
1

n1
+ 1

n2
≤ µ1 − µ2 ≤ X1 − X2 + zα/2σP

√
1

n1
+ 1

n2

Note how similar the setup is as in the case of single population
means with known standard deviation! The only differences are in
the point estimate used (X vs. X1 − X2), in the standard deviation
used (σ vs. the pooled standard deviation σP), and in the population

size (we multiplied by 1/
√

n vs. multiplying by
√

1
n1

+ 1
n2

).

BMI

The body mass index of 1545 people was found to be on av-
erage 28.8. The same index for another population of 1781

people was calculated as (on average) 27.6. The body mass
index has variance of 9 (in both populations). Build a 99%-
confidence interval for the difference in the BMI between the
two populations.

First, we will need z0.005 = 2.576. Then, we have:

• X1 − X2 = 1.2.

• σP =
√

1544·9+1780·9
3324 = 3. (unsurprising as both populations

had the same σ to begin with.)

• L = 1.2− 2.576 · 3 ·
√

1
1545 + 1

1781 = 0.931.

• U = 1.2 + 2.576 · 3 ·
√

1
1545 + 1

1781 = 1.469.

Hence, the difference in the mean BMI between these two
populations is

[0.931, 1.469] .

Difference in means of two populations with unknown variances

Now, assume we do not know the population variances! If we do
not know them, then we can take a page from the single population
confidence intervals book: we can estimate these unknown vari-
ances using the sample variances, s2

1 and s2
2. As soon as we estimate
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the variances though (rather than having the true ones), we get two
changes:

Change 1: we no longer have a z-value (from a normal distribu-
tion), but we have a t-value (from a Student’s T distribution) with
n1 + n2 − 2 degrees of freedom.

Change 2: as we do not know σ1, σ2, we estimate the pooled stan-
dard deviation as

sP =

√
(n1 − 1) s2

1 + (n2 − 1) s2
2

n1 + n2 − 2
.

X1 − X2 − tα/2,n1+n2−2sP

√
1

n1
+ 1

n2
≤ µ1 − µ2 ≤ X1 − X2 + tα/2,n1+n2−2sP

√
1

n1
+ 1

n2

BMI: take 2

Assume that we run a smaller experiment on the body mass
index of two populations. We now have collected a sample
of 4 from some population with X1 = 26.2 and s1 = 2, and
a sample of 6 from a different population with X2 = 28 and
s2 = 3.6. Build a 99% confidence interval for X1 − X2.

Now, instead of a z-value, we will need t0.005,9 = 4.297. We
have:

• X1 − X2 = −1.8.

• sP =
√

3·4+5·12.96
8 =

√
9.6 = 3.1.

• L = −1.8− 4.297 · 3.1 ·
√

1
4 + 1

6 = −10.4.

• U = −1.8 + 4.297 · 3.1 ·
√

1
4 + 1

6 = 6.8.

Hence, the difference in the mean BMI between these two
populations has now become

[−10.4, 6.8] .

A bit of critical analysis in these two results. Take a look at the
first confidence interval from the larger experiment with the known
standard deviations. We got (with 99% confidence) that the first
population has bigger BMI values by at least 0.931 points and up to
1.469 points. Hence, we could say that the first population has more
BMI with 99% confidence! On the other hand, looking at the second
smaller experiment with unknown standard deviations, we got a
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much bigger and much less clear confidence interval: specifically, we
got that the BMI difference is between -10.4 and 6.8. This translates
to possibly the first population having smaller BMI by a whole 10.4
points or bigger BMI by 6.8 points! Hence, we could not claim that
the first population has more nor less BMI with 99% confidence!

This type of critical thinking will be invaluable when we move to
hypothesis testing.

Confidence intervals for the ratio of the variances of two normally
distributed populations

Before we calculate confidence intervals on the variances of two nor-
mally distributed populations, we define the ratio of two sample vari-
ances as:

F =
s2

1/σ2
1

s2
2/σ2

2
.

Recall that variances have degrees of freedom: hence, assuming we
have a sample of n1 observations from the first and n2 observations
from the second population, then we say that F is distributed as an
F distribution with n1 − 1 degrees of freedom in the numerator and
n2 − 1 degrees of freedom in the denominator, or, mathematically, we
write that:

F ∼ Fn1−1,n2−1.

We show this visually in Figure 77. Note that much like the χ2 distri-
bution, the F distribution is also not symmetric.

Figure 77: The F distribution visually.

Much like with the other distributions we have seen, we also have
a table for the F distribution (see the last two pages here)! It is a little
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different to read: here the columns and rows represent the degrees
of freedom of the numerator (v1) and the denominator (v2). Then, we
find the value of α we are interested in to get the value.

Finding F distribution values

• n1 = 9, n2 = 5, α = 10%: we then look for ν1 = n1 − 1 = 8,
ν2 = n2 − 1 = 4, α = 0.1 and find f8,4,0.1 = 3.95.

• n1 = 5, n2 = 16, α = 5%: we then look for ν1 = n1 − 1 = 4,
ν2 = n2 − 1 = 15, α = 0.05 and find f4,15,0.05 = 3.06.

Wait! What do I do if I am looking at other values, such as the
ones used for α = 90%? Those are clearly not available in the table,
right? Well, in that case we have:

fu,v,α = 1
fv,u,1−α

In English: the f value for u degrees of freedom in the numerator,
v degrees of freedom in the denominator and α is equal to 1 over
the f value for v degrees of freedom in the numerator, u degrees of
freedom in the denominator and 1− α. Nifty, no? Let’s put it to the
use.

Finding F distribution values

In general, for two-sided confidence intervals we need val-
ues for α/2 and 1 − α/2. So, assume we are building 80%
confidence intervals and 95% confidence intervals for:

• n1 = 9, n2 = 5, α = 20%: we then look for ν1 = n1 − 1 = 8,
ν2 = n2 − 1 = 4, α/2 = 0.10 and find f8,4,0.1 = 3.95. We also
need the same value but for 1 − α/2, f8,4,0.9. We know it can
be found as:

f8,4,0.9 =
1

f4,8,0.1
=

1
2.81

= 0.356.

• n1 = 5, n2 = 15, α = 10%: we then look for ν1 = n1 − 1 = 4,
ν2 = n2 − 1 = 15, p = 1− α = 95% and find f4,15,0.05 = 3.06.
We also need f4,15,0.95. We know it can be found as:

f4,15,0.95 =
1

f15,4,0.05
=

1
5.86

= 0.171.

Please check this awesome online tool to help you do these calcu-
lations: https://stattrek.com/online-calculator/f-distribution.
aspx. Additionally, see Figure 78 for an example of how α and 1− α

are located in the F distribution.

https://stattrek.com/online-calculator/f-distribution.aspx
https://stattrek.com/online-calculator/f-distribution.aspx
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Figure 78: The F distribution and the marks for 1− α and α.

α 1− α

fu,v,1−α = 1
fv,u,α

Following a similar logic to the single population variance case, we
finally have:

fn2−1,n1−1,1−α/2
s2

1
s2

2
≤ σ2

1
σ2

2
≤ fn2−1,n1−1,α/2

s2
1

s2
2

Before we put this to the test, let us remember what a critical value is!
In essence, for a critical value fu,v,α we need:

P(F ≥ fu,v,α) = α.

Hence, to find the proper value we consult an F-table (see the last
pages of this set of notes). Let’s put this to use right away!

Semiconductor wafers and their oxide layers

The variability in the thickness of oxide layers in semiconduc-
tor wafers is a critical characteristic, where low variability is
desirable. A company is investigating two different ways to
mix gases so as to reduce the variability of the oxide thick-
ness. We produce 16 wafers with each gas mixture and our
results indicate that the standard deviation is s1 = 1.96Å and
s2 = 2.13Å for the two mixtures. What is the 95% confidence
intervals for the ratio between the two variances?
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Semiconductor wafers and their oxide layers

We have been given a series of information:

• size of population 1: n1 = 16;

• sample standard deviation for sample from population 1:
s1 = 1.96;

• size of population 2: n2 = 16;

• sample standard deviation for sample from population 2:
s2 = 2.13.

Since we are looking for a 95% confidence interval we need
two f values:

• fn2−1,n1−1,α/2 = f15,15,0.025 = 2.86.

• fn2−1,n1−1,1−α/2 = 1
fn1−1,n2−1,α/2

= 1
2.86 = 0.35.

Finally, the confidence interval for σ2
1 /σ2

2 is found as:[
fn2−1,n1−1,1−α/2

s2
1

s2
2

, fn2−1,n1−1,α/2
s2

1
s2

2

]
=

= [0.35 · 0.847, 2.86 · 0.847] = [0.296, 2.422] .

Confidence intervals for the difference of the proportions of two pop-
ulations

As a reminder, if we had a single population with proportion p, then
our confidence intervals, are given by:

p̂− zα/2

√
p̂ · (1− p̂)

n
≤ p ≤ p̂ + zα/2

√
p̂ · (1− p̂)

n
.

Recall that p̂ is the observed (estimated) proportion based on the

sample collected. Similarly,
√

p̂·(1− p̂)
n is the estimated square error

(standard deviation).
Now, assume we have two populations: one with true proportion

p1 and the other with true proportion p2. If we do not know what p1

and p2 are, how can we estimate p1 − p2?
Well, let us follow a similar process:

1. Collect a sample from the first population of size n1 and calculate
the observed proportion p̂1.
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2. Collect a sample from the second population of size n2 and calcu-
late the observed proportion p̂2.

3. Estimate p1 − p2 as p̂1 − p̂2.

Great! That will do! But, what about the confidence interval
around it? Following the theory from the single population pro-
portions, we get...

If n1 p1, n2 p2, n1(1− p1), n2(1− p2) are all greater than or equal to 5,
then p̂1 − p̂2 is normally distributed with mean p1 − p2 and variance
p̂1(1− p̂1)

n1
+ p̂2(1− p̂2)

n2
.

Using that, we finally obtain our confidence interval as:

p̂1 − p̂2 − zα/2

√
p̂1 (1− p̂1)

n1
+

p̂2 (1− p̂2)

n2
≤ p1 − p2 ≤

≤ p̂1 − p̂2 + zα/2

√
p̂1 (1− p̂1)

n1
+

p̂2 (1− p̂2)

n2
.

Environmentally conscious

Residents of major metropolitan areas in the US were asked
whether they agree with the following statement:

“I consider my self environmentally conscious.”

The answers they could give were either a “Yes” or a “No”.
Specifically, we focus on two cities: Portland and Philadelphia.

• Out of n = 91 respondents in Portland, 61 answered Yes.

• Out of n = 100 respondents in Philadelphia, 45 said Yes.

Build a 95% confidence interval for the true proportion differ-
ence p1 − p2, where p1 is the proportion of people agreeing
with the statement in Portland and p2 the proportion of the
same people in Philadelphia.

We have:

• n1 = 91, p̂1 = 61
91 = 0.67.

• n2 = 100, p̂2 = 45
100 = 0.45.

We also have zα/2 = z0.025 = 1.96. Plugging everything to-
gether:

p1 − p2 ∈ [0.22− 1.96 · 0.07, 0.22 + 1.96 · 0.07] = [0.08, 0.36] .
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Let us dwell on this last result for one minute. What do we learn
from this confidence interval? Well, we learn that residents of Port-
land are (with 95% confidence) more environmentally conscious
than residents of Philadelphia! We could never make the same as-
sertion simply by looking at the individual observed proportions:
that is, we cannot make the claim simply through the argument that
p̂1 > p̂2. But now? We most definitely can make it! Always with the
sidenote that “with 95% confidence”.

More on that, in the coming lectures.
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CRITICAL VALUES OF THE F DISTRIBUTION

ν2\ν1 2 3 4 5 6 7 8 10 12 15 20 30 50 ∞
α

1 0.100 49.5 53.6 55.8 57.2 58.2 59.1 59.7 60.5 61.0 61.5 62.0 62.6 63.0 63.3
0.050 199 216 225 230 234 237 239 242 244 246 248 250 252 254

0.025 800 864 900 922 937 948 957 969 977 985 993

2 0.100 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.39 9.41 9.43 9.44 9.46 9.47 9.49

0.050 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5
0.025 39.0 39.2 39.2 39.3 39.3 39.4 39.4 39.4 39.4 39.4 39.4 39.5 39.5 39.5

3 0.100 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.23 5.22 5.20 5.18 5.17 5.15 5.13

0.050 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.79 8.74 8.70 8.66 8.62 8.58 8.53

0.025 16.0 15.4 15.1 14.9 14.7 14.6 14.5 14.4 14.3 14.3 14.2 14.1 14.0 13.9
4 0.100 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.92 3.90 3.87 3.84 3.82 3.79 3.76

0.050 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.96 5.91 5.86 5.80 5.75 5.70 5.63

0.025 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.84 8.75 8.66 8.56 8.46 8.38 8.26

5 0.100 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.30 3.27 3.24 3.21 3.17 3.15 3.10

0.050 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.74 4.68 4.62 4.56 4.50 4.44 4.36

0.025 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.62 6.52 6.43 6.33 6.23 6.14 6.02

6 0.100 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.94 2.90 2.87 2.84 2.80 2.77 2.72

0.050 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.06 4.00 3.94 3.87 3.81 3.75 3.67

0.025 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.46 5.37 5.27 5.17 5.07 4.98 4.85

7 0.100 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.70 2.67 2.63 2.59 2.56 2.52 2.47

0.050 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.64 3.57 3.51 3.44 3.38 3.32 3.23

0.025 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.76 4.67 4.57 4.47 4.36 4.28 4.14

8 0.100 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.54 2.50 2.46 2.42 2.38 2.35 2.29

0.050 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.35 3.28 3.22 3.15 3.08 3.02 2.93

0.025 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.29 4.20 4.10 4.00 3.89 3.81 3.67

9 0.100 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.42 2.38 2.34 2.30 2.25 2.22 2.16

0.050 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.14 3.07 3.01 2.94 2.86 2.80 2.71

0.025 5.71 5.08 4.72 4.48 4.32 4.20 4.10 3.96 3.87 3.77 3.67 3.56 3.47 3.33

10 0.100 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.32 2.28 2.24 2.20 2.16 2.12 2.06

0.050 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.98 2.91 2.84 2.77 2.70 2.64 2.54

0.025 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.72 3.62 3.52 3.42 3.31 3.22 3.08

11 0.100 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.25 2.21 2.17 2.12 2.08 2.04 1.97

0.050 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.85 2.79 2.72 2.65 2.57 2.51 2.40

0.025 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.53 3.43 3.33 3.23 3.12 3.03 2.88

12 0.100 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.19 2.15 2.10 2.06 2.01 1.97 1.90

0.050 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.75 2.69 2.62 2.54 2.47 2.40 2.30

0.025 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.37 3.28 3.18 3.07 2.96 2.87 2.72

13 0.100 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.14 2.10 2.05 2.01 1.96 1.92 1.85

0.050 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.67 2.60 2.53 2.46 2.38 2.31 2.21

0.025 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.25 3.15 3.05 2.95 2.84 2.74 2.60
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CRITICAL VALUES OF THE F DISTRIBUTION

ν2\ν1 2 3 4 5 6 7 8 10 12 15 20 30 50 ∞
α

14 0.100 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.10 2.05 2.01 1.96 1.91 1.87 1.80

0.050 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.60 2.53 2.46 2.39 2.31 2.24 2.13

0.025 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.15 3.05 2.95 2.84 2.73 2.64 2.49

15 0.100 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.06 2.02 1.97 1.92 1.87 1.83 1.76

0.050 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.54 2.48 2.40 2.33 2.25 2.18 2.07

0.025 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.06 2.96 2.86 2.76 2.64 2.55 2.40

16 0.100 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.03 1.99 1.94 1.89 1.84 1.79 1.72

0.050 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.49 2.42 2.35 2.28 2.19 2.12 2.01

0.025 4.69 4.08 3.73 3.50 3.34 3.22 3.12 2.99 2.89 2.79 2.68 2.57 2.47 2.32

17 0.100 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.00 1.96 1.91 1.86 1.81 1.76 1.69

0.050 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.45 2.38 2.31 2.23 2.15 2.08 1.96

0.025 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.92 2.82 2.72 2.62 2.50 2.41 2.25

18 0.100 2.62 2.42 2.29 2.20 2.13 2.08 2.04 1.98 1.93 1.89 1.84 1.78 1.74 1.66

0.050 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.41 2.34 2.27 2.19 2.11 2.04 1.92

0.025 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.87 2.77 2.67 2.56 2.44 2.35 2.19

19 0.100 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.96 1.91 1.86 1.81 1.76 1.71 1.63

0.050 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.38 2.31 2.23 2.16 2.07 2.00 1.88

0.025 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.82 2.72 2.62 2.51 2.39 2.30 2.13

20 0.100 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.94 1.89 1.84 1.79 1.74 1.69 1.61

0.050 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.35 2.28 2.20 2.12 2.04 1.97 1.84

0.025 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.77 2.68 2.57 2.46 2.35 2.25 2.09

25 0.100 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.87 1.82 1.77 1.72 1.66 1.61 1.52

0.050 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.24 2.16 2.09 2.01 1.92 1.84 1.71

0.025 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.61 2.51 2.41 2.30 2.18 2.08 1.91

30 0.100 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.82 1.77 1.72 1.67 1.61 1.55 1.46

0.050 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.16 2.09 2.01 1.93 1.84 1.76 1.62

0.025 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.51 2.41 2.31 2.20 2.07 1.97 1.79

60 0.100 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.71 1.66 1.60 1.54 1.48 1.41 1.29

0.050 3.15 2.76 2.53 2.37 2.25 2.17 2.10 1.99 1.92 1.84 1.75 1.65 1.56 1.39

0.025 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.27 2.17 2.06 1.94 1.82 1.70 1.48

80 0.100 2.37 2.15 2.02 1.92 1.85 1.79 1.75 1.68 1.63 1.57 1.51 1.44 1.38 1.24

0.050 3.11 2.72 2.49 2.33 2.21 2.13 2.06 1.95 1.88 1.79 1.70 1.60 1.51 1.32

0.025 3.86 3.28 2.95 2.73 2.57 2.45 2.35 2.21 2.11 2.00 1.88 1.75 1.63 1.40

100 0.100 2.36 2.14 2.00 1.91 1.83 1.78 1.73 1.66 1.61 1.56 1.49 1.42 1.35 1.21

0.050 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.93 1.85 1.77 1.68 1.57 1.48 1.28

0.025 3.83 3.25 2.92 2.70 2.54 2.42 2.32 2.18 2.08 1.97 1.85 1.71 1.59 1.35

∞ 0.100 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.60 1.55 1.49 1.42 1.34 1.26 1.00

0.050 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.83 1.75 1.67 1.57 1.46 1.35 1.00

0.025 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.05 1.94 1.83 1.71 1.57 1.43 1.00
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24-25. Introduction to
hypothesis testing: hypothesis
testing for proportions

Learning objectives

After lectures 24–25, we will be able to:

• Formulate statistical hypotheses for testing.

– Carefully define null and alternative hypotheses.

– Define what are the errors of Type I and Type II in hy-
pothesis testing.

• Reject or fail to rject hypotheses for proportions.

• Define the P-value and use it to reject or fail to reject a hy-
pothesis.

Motivation: True or False?

1. 94% of UIUC’s College of Engineering graduates secure employ-
ment or go to graduate school within a year of graduation.

2. The average starting salary for these Engineering graduates is
$78,159.

3. Electrical Engineering or Construction Management? Electrical
engineers earn more in the start of their careers.

4. Electrical Engineering or Construction Management? The top 10%
construction management professionals earn more than the top
10% electrical engineering professionals.

5. The majority of customers prefers Coke to Pepsi.

6. People with a dog in the house live longer.

What do all the above have in common and what are their differ-
ences? How can we test these claims? This is what hypothesis testing
is all about!

Motivation: Grainger College of Engineering internships

The University of Illinois is interested in finding how many of their
Engineering students already have internships lined up for next
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summer. The University believes that the proportion is 50%: that is,
roughly half the students have secured internships.

The University sent out a survey that 140 students filled out with
84 of them stating they have an internship offer at their hands. Is the
true percentage 50%? Or is it different than that?

Hypothesis testing

Once more, let us go back to the last weeks of lectures. We have seen
point estimation, confidence intervals, and we are now moving to
hypothesis testing. A quick review:

How do we estimate an unknown parameter/quantity?

1. Point estimation: provides us with a single estimate for some un-
known parameter of a population.

• Example: 63% prefer Coke to Pepsi.

2. Interval estimation: provides us with a range/interval containing
believable values for some unknown parameter of a population.

• Example: The percentage of people preferring Coke to Pepsi lies
somewhere between 55% and 71%.

3. Hypothesis testing. We form a hypothesis or a claim for some un-
known parameter of a population.

• Example: Our claim is that more than half of the population
prefers Coke to Pepsi.

• We now need to somehow accept that claim; or reject it, based
on observations.

Before we formally define hypothesis testing, we ask ourselves
a series of motivating questions. Namely, we want to address the
following:

1. How do we formally state a hypothesis? How do we put it in the
proper mathematical terms?

2. When do we accept and when do we reject a hypothesis?

• What does “accepting” mean in this mathematical context?

• What does “rejecting” mean in this mathematical context?

3. What is the likelihood of reaching the wrong conclusion? That
could mean that..

• either we accept something that is false.
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• or we reject something that is true.

We are now ready to formally define hypothesis testing. We have
the following definitions.

Definition 63 (Statistical hypothesis) With the term statistical hy-
pothesis we mean a claim about some unknown parameters or the unknown
distributions of a population. Some examples include:

• The mean grade of a student in a class is a B+.

• The proportion of students that end up with an A in a class is 25%.

• The grade of a student in a class is normally distributed.

A statistical hypothesis is divided in two parts. The first one is
referred to as a null hypothesis, H0, which is the hypothesis/claim
that is being tested. As an example, our null hypothesis could be that
the mean grade is a B+, or that the true proportion of students with
an A is 25%.

The second one is the alternative hypothesis, H1, which is ei-
ther the opposite of or simply an alternative to the null hypothe-
sis/claim. For example, the alternative hypothesis could be that the
mean grade is not a B+, or that the true proportion of students with
an A is smaller than 25%.

Before we get started formulating statistical hypotheses, we need
to clarify a couple of points. Formulating statistical hypotheses can
be pretty difficult at first. That said, there are a few rules we may
follow.

1. How to state the null and alternative hypotheses?

• State the null hypothesis as an equality.

• State the alternative hypothesis as either a two-sided inequality
( 6=) or a one-sided inequality (≤,≥) depending on the hypothe-
sis being tested.

2. What are we proving or disproving?

• Rejecting a hypothesis in favor of the alternative hypothesis is a
strong conclusion.

• Failing to reject the null hypothesis is a weak conclusion.

Due to that, we formulate our hypothesis in the following way. We
set what we are interested in proving as the alternative hypothe-
sis. Let us practice that in the next few problems.
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Average grades

Let’s assume our claim is the following:

“The average grade of a student in a class is different than an
84%.”

Define µ as the average score of a student in a class. Based on
that we formulate the statistical hypothesis as:

H0 : µ = 84%.

H1 : µ 6= 84%.

Coke vs. Pepsi

Say, our claim is now that:

“More than half of the population prefers Coke to Pepsi.”

Let p be the proportion of people preferring Coke to Pepsi.
Then, we can formulate this hypothesis as

H0 : p = 0.5

H1 : p > 0.5

Note that the null hypothesis is always an equality. The al-
ternate hypothesis though changes depending on our original
claim.

Eating greens

What about the following claim?

“There is no life expectancy change by eating vegetables.”

First, we assume we have two populations: one that eats veg-
etables and one that does not. Let µi be the true mean life
expectancy of each group. Then, we formulate our hypothesis
as:

H0 : µ1 − µ2 = 0

H1 : µ1 − µ2 6= 0.



ie 300 273

Eating greens: reformulated

This will look very similar. Pay attention to the detail that
changes!

“There is no life expectancy increase by eating vegetables.”

Again, we assume the existence of two (eating vs. non-eating
vegetables) populations. However, our hypothesis changes
slightly now to:

H0 : µ1 − µ2 = 0

H1 : µ1 − µ2 < 0.

Before we head to the next definitions, we summarize some finer
details of formulating a hypothesis.

• The null hypothesis is always an equality.

• The alternative hypothesis can be one- or two-sided, depending on
the claim we are trying to prove/disprove.

• The hypothesis can deal with a single population; or with the
comparison between two populations.

Let us get to the fundamental part of this lecture. How do we
perform hypothesis tests? How do we decide whether we have
enough information to accept or reject a hypothesis?

Definition 64 (Hypothesis test) A hypothesis test is a statistical pro-
cedure to collect information based on a random sample, which can lead to
making a decision about the null hypothesis.

Let’s see this with an example.
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Coke vs. Pepsi

Assume you want to check whether 60% of the people prefer
Coke to Pepsi. We can do the following operations.

1. First, formulate the statistical hypothesis as H0 : p = 0.6
vs. H1 : p 6= 0.6. We could have formulated a one-sided
alternative hypothesis as H1 : p > 0.6 or H1 : p < 0.6 if
we had more information about the original claim, but now
H1 : p 6= 0.6 will do.

2. Secondly, collect a random sample. Use it to estimate the
proportion of people observed that prefer Coke to Pepsi.

3. Thirdly, try to verify. If your original hypothesis/claim is
true, could you have gotten the observed proportion in the
sample? If so, accept; if not, reject.

Visually:

Formulate hypothesis. H0 :
p = 0.6. vs. H1 : p 6= 0.6.

Collect random

sample of size n.

Calculate proportion p̂.
Verify. Can p̂ be obtained

from a population with p?

Accept hypothesis Reject hypothesis

Yes No

We proceed to discuss how we may accept or reject a hypothesis.
First of all, let us get one thing out of the way. While “accepting”
and “rejecting” are universally used for hypothesis testing, it is more
correct to think of them as “failing to reject” and “rejecting”.

Think of the following parallel: say you are the jury at a trial.
The hypothesis is that the defendant is innocent, no? The attorneys
present data (observations) and it is up to you to decide whether it is
enough to “reject innocence” or “fail to reject innocence”. Note that
failing to reject innocence is not the same as being innocent! It merely
implies that there was not enough evidence to persuade you.

So, how does that translate to hypothesis testing? Let us study this
using proportions.
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Hypothesis testing for proportions

Assume we have a population X that has some unknown proportion
p. We collect a sample of size n from that population. Recall that if
we have np ≥ 5, n(1− p) ≥ 5, then we may make the claim that the
observed proportion out of a sample of size n (defined as p̂ = x

n ) is

distributed as p̂ ∼ N
(

p, p(1−p)
n

)
. 79 79 This comes straight from our dis-

cussion about confidence intervals on
proportions. See Lectures 20-23.

For the sake of the example, assume that we have

H0 : p = 0.6.

H1 : p 6= 0.6.

Say we have collected a sample of size n = 50. Then, if the null
hypothesis is true, we’d expect a distribution of N (0.6, 0.0048). Vi-
sually, we get a normal distribution as the one presented in Figure 79.
Now, say we select a confidence level of 95%. That means, visually,
we’d expect 95% of the potential sample averages to fall in the green
area; not the red. Finally, let’s say that our sample average (for this
n = 50) amounts to p̂ = 0.75. We also mark that in the figure.

Figure 79: A figure showing the distribution of the population if the null hypothesis
is true, green and red areas marking the critical acceptance and rejection regions, and
a point at p̂ = 0.75 that represents the obtained sample average.
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0.75

We claim that the above figure essentially captures hypothesis test-
ing. The question becomes: does the observed proportion p̂ = 0.75
fall in the range of believable values (the critical regions of accept-
ing)? Or does it fall outside them (in the critical regions of rejecting
the hypothesis)?

Based on this, let us revisit the terms we use. Accepting and re-
jecting a hypothesis are not the most appropriate terms for the out-
comes of a hypothesis test. Instead, from now on, we will write that
we:

• Reject the hypothesis, when we have sufficient observations to
claim that the null hypothesis is not true.
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– This is a s strong conclusion.

– It implies the existence of sufficient evidence agains the hypoth-
esis.

– In the end of this, we are quite certain that H0 is wrong.

• Fail to reject the hypothesis, when we are not sure about the valid-
ity of the null hypothesis.

– Consequently, it is a weak conclusion.

– It merely implies the lack of sufficient evidence agains the hy-
pothesis.

– It does not mean that H0 is true! It only implies that we are
uncertain about either H0 or H1 being true.

Reaching the wrong conclusions

How many types of errors do you foresee appearing with this way of
testing a hypothesis? Let’s see this in tabular form:

Decision H0 is true H0 is false
Reject H0 incorrect decision correct decision
Fail to reject H0 correct decision incorrect decision

We will then need to formally define these two types of errors.
Their names are “uninspired”. These two are defined as Type I or α

error 80 and Type II or β error. 80 α? Is it.. the same as α in confidence
intervals? Oh, yes. Yes it is.

Definition 65 (Type I errors) The Type I or α error happens when we
reject H0 even though H0 is valid. It is quantified as

α = P(reject H0 when H0 is true) = P(reject H0|H0).

Definition 66 (Type II errors) The Type II or β error happens when we
fail to reject H0 even though H0 is not true. It is quantified as

β = P(fail to reject H0 when H0 is false) = P(fail to reject H0|H0).

The courthouse parallel

Take a minute and think of the parallels to the jury trial exam-
ple from before. What is α and β in a trial setting?

Let us focus on α. We have been using it all along!
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α = P(Type I error) = P(reject H0 when H0 is true).

0.3 0.4 0.5 0.6 0.7 0.8 0.9

• 1− α is called the significance or the size of the test.

• It is equivalent to the red shaded areas.

• It can be improved by selecting stricter confidence levels.

The courthouse parallel (cont’d)

You can improve α in a trial by asking for more and more
evidence. For example, “I will not find anyone guilty unless
you present video evidence that they have done it” increases α

signficantly, doesn’t it? I wonder what happens to β, though...

Let us see another example for the effect of α. In our motivating
example, we asked n = 50 people to check the hypothesis that p =

0.6. Assume out of that sample we get p̂ = 0.75. Then, the following
would be the visual results for different significance levels (values for
α):

α = 20%

0.3 0.4 0.5 0.6 0.7 0.8 0.9

α = 5%

0.3 0.4 0.5 0.6 0.7 0.8 0.9

α = 10%

0.3 0.4 0.5 0.6 0.7 0.8 0.9

α = 2.5%

0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Hence, the bigger the α we are willing to accept, the tougher it
becomes to reject a hypothesis. When α = 0 (no error accepted!), then
we no longer can reject a hypothesis.

We now move to β.

β = P(Type II error) = P(fail to reject H0 when H0 is false).

• It is related to 1− β, the power of the test.

• To formulate, it requires a specific alternative hypothesis.

• It decreases as the difference between the hypothesized and the
true value of the hypothesis increases.

What this tells us is that β is not universal, given a hypothesis test.
Instead, it depends on what we are comparing H0 to. We show this in
practice in the next pages.

Type II errors

We have a company that offers a service that needs to be at
60% or above. The company is in trouble when the service
quality lowers at 50%. To avoid this, they have an inspection
mechanism in place. From time to time, they collect a sample
of n = 50 services and make sure that average lies in the ac-
ceptance region! How often are they wrong and they believe
they are good when they are not? What is the probability they
accept the hypothesis that p = 0.6 when in fact the true p has
lowered to 0.5?

The sampling distribution for n = 50 if the null hypothesis
that p = 0.6 is true. Recall this is N (0.6, 0.0048).

0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Type II errors (cont’d)

In a similar manner, we can represent the sampling dis-
tribution for n = 50 when p = 0.5 instead! It would be
N (0.5, 0.05).

The sampling distribution for n = 50 if p = 0.5 is true.

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Let us try to plot these two together!

Plotting the two together reveals quite the overlap.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

This means that it is quite possible that a value in the overlap
may correspond to a “reality” of p = 0.6 or one of p = 0.5.
But, remember! We only accept part of the first curve, depend-
ing on our α! Let’s add this to the plot!

When we add the regions where we’d reject the original null
hypothesis H0 : p = 0.6. Here we use α = 10%.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Type II errors (cont’d)

Still, though. Observe the area in dark red below.

The dark area represents the β error! The lighter red area
shows the power of the test (1− β).

0.3 0.4 0.5 0.6 0.7 0.8 0.9

As practice, paint the following.

Practice with the visuals

Here, we assume that H0 : p = 0.4 (the null hypothesis) and
say the alternative is p = 0.6. We have already provided where
you would reject the null hypothesis and where you would
not. Mark the following areas: (i) the region where you reject
the null hypothesis, (ii) the region where you have the β error,
(iii) the region of the power of the test (1− β).

0.2 0.3 0.4 0.5 0.6 0.7 0.8

RejectFail to rejectHow could we mathematically calculate the β error? Let us see the
red area we need to be covering. That would be between 0.6− zα/2 ·
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0.0693 (recall that we have N (0.6, 0.048), so
√

0.048 = 0.0693) and
0.6 + zα/2 · 0.0693. For the sake of the example let us use α = 10%,
which leads to z0.05 = 1.645 =⇒ 0.6− zα/2 · 0.0693 = 0.486 and
0.6 + zα/2 · 0.0693 = 0.714. Hence, we have, assuming that p = 0.5 is
right and hence distributed with N (0.5, 0.005):

β = P(0.486 ≤ p ≤ 0.714) = P(p ≤ 0.714)− P(p ≤ 0.486) =

= Φ
(

0.714− 0.5√
0.005

)
−Φ

(
0.486− 0.5√

0.005

)
= Φ(3.03)−Φ (−0.20) = Φ(3.03)− 1 + Φ(0.20) =

= 0.9988− 1 + 0.5793 = 57.81%.

Before we finish this discussion, we provide a couple of observa-
tions about the Type I and Type II errors:

• Observation #1: assuming a fixed sample size, then decreasing one
error will result in an increase of the other error.

– Decreasing α will imply an increase in β.

– Decreasing β will imply an increase in α.

• Observation #2: both errors can be reduced by increasing the sam-
ple size.

Finishing the proportion hypothesis testing procedure

We are finally ready to finish the discussion on hypothesis testing for
proportions! We separate our discussion in three cases, depending on
the hypothesis testing format (two-sided or one-sided).

Two-sided hypothesis testing

1. Preliminaries.

• Select the desired α (significance 1− α).

• Set up your hypothesis test as:

H0 : p = p0

H1 : p 6= p0.

2. Compute test statistic based on sample of size n.

• p̂

or

• Z0 = p̂−p0√
p0(1−p0)

n

.

3. Check.
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• Is p̂ below p0 − zα/2

√
p0(1−p0)

n or above p0 + zα/2

√
p0(1−p0)

n ?

• Equivalently, is Z0 below −zα/2 or above zα/2?

4. Decide.

• If the check is true, reject the hypothesis.

• Otherwise, fail to reject it.

To calculate the power of the test (or β), first identify the alterna-
tive you are investigating, say p = p1. Then, assume that your sample

is distributed such that p ∼ N
(

p1, p1(1−p1)
n

)
. Finally, calculate:

β = P

(
p0 − zα/2

√
p0 (1− p0)

n
≤ p ≤ p0 + zα/2

√
p0 (1− p0)

n

)
.

One-sided hypothesis testing Assume now that we are looking for the
upper alternative hypothesis (p > p0).

1. Preliminaries.

• Select the desired α (significance 1− α).

• Set up your hypothesis test as:

H0 : p = p0

H1 : p > p0.

2. Compute test statistic based on sample of size n.

• p̂

or

• Z0 = p̂−p0√
p0(1−p0)

n

.

3. Check.

• Is p̂ above p0 + zα

√
p0(1−p0)

n ?

• Equivalently, is Z0 above zα?

4. Decide.

• If the check is true, reject the hypothesis.

• Otherwise, fail to reject it.
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To calculate the power of the test (or β), again identify the alterna-
tive you are investigating, say p = p1. Then, assume that your sample

is distributed such that p ∼ N
(

p1, p1(1−p1)
n

)
. Finally, calculate:

β = P

(
p ≤ p0 + zα

√
p0 (1− p0)

n

)
.

For the lower alternative hypothesis (p < p0), we take very similar
steps.

1. Preliminaries.

• Select the desired α (significance 1− α).

• Set up your hypothesis test as:

H0 : p = p0

H1 : p < p0.

2. Compute test statistic based on sample of size n.

• p̂

or

• Z0 = p̂−p0√
p0(1−p0)

n

.

3. Check.

• Is p̂ below p0 − zα

√
p0(1−p0)

n ?

• Equivalently, is Z0 below −zα?

4. Decide.

• If the check is true, reject the hypothesis.

• Otherwise, fail to reject it.

To calculate the power of the test (or β), first identify the alterna-
tive you are investigating, say p = p1. Then, assume that your sample

is distributed such that p ∼ N
(

p1, p1(1−p1)
n

)
. Finally, calculate:

β = P

(
p0 − zα

√
p0 (1− p0)

n
≤ p

)
.
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A comprehensive example

We claim that the percentage of people in favor of a law is 0.5.
A sample of 50 people gave p̂ = 0.62. Our hypothesis then is
that H0 : p = 0.5.

1. We would like the limits of our hypothesis test to be be-
tween 0.45 and 0.55. What is α?

2. What is the acceptance region for α = 0.05 and a two-
sided test? Can we reject the null hypothesis in favor of the
alternative p 6= 0.5?

3. What is the acceptance region for α = 0.05 and a one-sided
test (alternative is H1 : p > 0.5)? Can we reject the null hy-
pothesis in favor of the alternative?

4. What is β if the true percentage in favor of the law is 0.70?
Assume we are interested in a one-sided (upper) hypothesis
test.
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A comprehensive example

Recall that p̂ ∼ N
(

p, p(1−p)
n

)
and if p = 0.5 then p̂ ∼

N (0.5, 0.005). We have

1− α = P (0.45 ≤ p̂ ≤ 0.55) =⇒
=⇒ α = P( p̂ < 0.45) + P( p̂ > 0.55) =

= 2− 2Φ(0.71) = 2− 1.5222 = 0.4778.

Hence α = 0.5222 = 52.22%.

For the second part, this is easier: for α = 0.05, we have zα/2 =

z0.025 = 1.96. Hence, the acceptance region would be between
0.5 − 1.96

√
0.005 = 0.361 and 0.5 + 1.96

√
0.005 = 0.639. We

fail to reject the hypothesis, and hence we do not have enough
evidence to disagree with p = 50%.

For the third part, the only difference is that we are only fo-
cused on the alternative hypothesis of H1 : p > p0. Hence,
we could only reject on that side. For α = 0.05, we now use
zα = z0.05 = 1.645 and we get: 0.5 + 1.645

√
0.005 = 0.616. The

acceptance region is between 0 and 0.616. This means that we
do have enough evidence to reject the null hypothesis now!
We have enough evidence to disagree with p = 50% in favor
of p > 50%.

Finally, for the power of the test against p = 0.7: we already
have that the upper limit is equal to 0.616. Hence, we would
reject the hypothesis for any p̂ above this. We are then looking
at

1− β = P( p̂ > 0.616) = 1−Φ
(

0.616− 0.7√
0.7 · 0.3/50

)
=

= 1−Φ(−1.30) = Φ(1.30) = 0.9032.

This is a pretty powerful test, even with a small sample size
(comparatively) at n = 50.
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26-27. Hypothesis testing for
means and variances

Learning objectives

After lectures 26–27, we will be able to:

• Fail to reject or reject hypotheses for means:

– normally distributed population with known variance.

– normally distributed population with unknown variance.

– not normally distributed population, but with a large
enough sample.

• Fail to reject or reject hypotheses for normally distributed
population variances.

P-values

Before we get to the means and variances, we begin from our pre-
vious worksheet. The last two exercises asked you to compute a so
called P-value. Let us see the reason behind investigating this quan-
tity.

Definition 67 (P-values) In hypothesis testing, the P-value is the largest
probability that still leads to the null hypothesis being correct (failing to
reject).

We begin by comparing α to the P-value. The probability α is a
rigid, pre-specified limit to the risk we are willing to take. The risk,
of course, translates to P(reject H0|H0 is true). No matter how useful
α is fails to reveal the whole picture of statistical hypothesis testing.

On the other hand, the P-value is an observed significance level,
that depends on the observed (obtained) sample. As it is the largest
probability that would still allow us to fail to reject H0, we immedi-
ately get the following as a consequence:

• if we fail to reject the null hypothesis, then α ≤ P-value;

• if we reject the null hypothesis, then α > P-value.

We show this consequence visually in Figure 80.
So, how to calculate a P-value? It depends on whether we are test-

ing two sides or one side. Recall that for a given observed proportion
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Figure 80: In the first pair, we have that the observed proportion is p̂ = 0.66. We then
show α (as in the rejection areas, in red) and the observed P-value (in blue). In the
second pair, we show the same values but now the observed proportion is p̂ = 0.71.
Note how P-value ≥ α in the first observed proportion (fail to reject) and P-value < α
in the second observed proportion (reject).

0.5 0.6 0.7 0.8

0.66
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0.71
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0.71

p̂, we may compute the test statistic Z0 = p̂−p0√
p0(1−p0)

n

. Then, we have

for the P-values: 81 81 See Worksheet 24-25 for the details.

• Two-sided hypothesis: P = 2 (1−Φ (|Z0|))

• One-sided (upper) hypothesis: P = 1−Φ (Z0)

• One-sided (lower) hypothesis: P = Φ (Z0)

Based on our discussion here, we have two ways to recommend
rejection of a null hypothesis:

1. Check whether the observed proportion p̂ or the Z0 statistic fall in
the rejection region.

2. Calculate the P-value and compare to α.

In summary, we have for proportion hypothesis testing:



ie 300 288

Proportion hypothesis testing

Null hypothesis: Test statistic: Distribution:

H0 : p = p0.
Z0 =

p̂− p0√
p0(1−p0)

n

.
Z0 ∼ N (0, 1) .

H1 Rejection region P-value
p 6= p0 |Z0| > zα/2 2 · (1−Φ(|Z0|))
p > p0 Z0 > zα 1−Φ(Z0)

p < p0 Z0 < −zα Φ(Z0)

Reject if Z0 falls in the rejection region or if P-value < α.

Polling for a law

We surveyed 100 people on whether they support a new pro-
posed law that will be on the ballot. 58% said that they do.
Our hypothesis is that our county is evenly divided and hence
50% actually do support the law. What is the observed P-
value? Should we reject the hypothesis that there are 50% in
support of the law when α = 0.05?

We have that
Z0 =

0.58− 0.5
0.05

= 1.6.

Now, we calculate Φ(Z0) = Φ(1.6) = 0.9452. Hence, we get
that P-value = 2 · (1− 0.9452) = 0.1096. Because P-value ≥ α,
we fail to reject the hypothesis.
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Polling for a law

Assume that in a different county, we surveyed 100 people
on whether they support the law: we now got that 38% said
that they do. Our hypothesis is that our city is again that the
county supports it by 50%; but now our alternative hypothesis
is the lower side only (i.e., H1 : p < 0.5). What is the observed
P-value in this case? Should we reject the hypothesis that
there are 50% in support of the law when α = 0.05?

We have that
Z0 =

0.38− 0.5
0.05

= −2.4.

Now, we calculate Φ(Z0) = Φ(−2.4) = 1 − Φ(2.4) = 0.0082.
This is also the P-value. Note that P-value < α, and thus we
should reject the hypothesis in favor of the alternative (that is,
less than 50% support the law).

Hypothesis testing for means

We now do the same for means. Recall the three cases we are inter-
ested in!

1. normally distributed population with known variance σ2.

2. normally distributed population with unknown variance.

3. not normally distributed population, but we have a large enough
sample.

Their derivation is again based on their confidence intervals, so we
simply provide a summary of their results.
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Normally distributed population with known variance σ2

Mean with known variance hypothesis testing

Null hypothesis: Test statistic: Distribution:

H0 : µ = µ0. Z0 =
X− µ0

σ√
n

. Z0 ∼ N (0, 1) .

H1 Rejection region P-value
µ 6= µ0 |Z0| > zα/2 2 · (1−Φ(|Z0|))
µ > µ0 Z0 > zα 1−Φ(Z0)

µ < µ0 Z0 < −zα Φ(Z0)

Like earlier, we may reject if:

1. Check whether the observed sample average X or the Z0 statistic
fall in the rejection region.

2. Calculate the P-value and compare to α.

A life expectancy example

We select a random sample of 100 recorded deaths in the
city of Urbana. The sample average is 71.8 years old. As-
suming that life expectancy is normally distributed with a
(known) standard deviation of 9 years, can we claim that life
expectancy in Urbana is 70 years or is it higher? Use α = 5%.

First, state the null and alternate hypotheses. In our case:

H0 : µ = 70 H1 : µ > 70

Now, calculate Z0 = 71.8−70
9/
√

100
= 2. Since it is one-sided, check

zα = z0.05 = 1.645. We finally reject the hypothesis, as Z0 > zα.

In this example, we could have built the upper confidence interval
(for α = 5%) around the hypothesized mean as:

[0, U] =

[
0, µ0 + zα

σ√
n

]
= [0, 71.48] .

We can see that even doing it this way, we still note that the observed
sample average (X = 71.8) is outside the confidence interval, and
hence we should reject the null hypothesis that life expectancy is at
70 years in favor of the alternative that it is higher than 70 years.
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Normally distributed population with unknown variance σ2

When the variance is unknown, we recall from the confidence inter-
val discussion that the sampling distribution is no longer the normal
one; instead we used the so-called Student’s T distribution.

Mean with unknown variance hypothesis testing

Null hypothesis: Test statistic: Distribution:

H0 : µ = µ0. T0 =
X− µ0

s√
n

. T0 ∼ Tn−1.

H1 Rejection region P-value
µ 6= µ0 |T0| > tα/2,n−1 2 · (1− Tn−1(|T0|))
µ > µ0 T0 > tα,n−1 1− Tn−1(T0)

µ < µ0 T0 < −tα,n−1 Tn−1(T0)

A quick note about the notation. With lower case t we typically
refer to the T distribution critical values (e.g., tα,n−1). On the other
hand, with upper case T we typically refer to the cumulative distribu-
tion of the T distribution (e.g., Tn−1(t) = P(T ≤ t)): for these values
we would typically consult a cumulative distribution function for the
T distribution table.

A life expectancy example

We select a random sample of 16 recorded deaths in the city of
Urbana. The sample average is 71.8 years old and the sample
standard deviation is 9 years. Assuming that life expectancy is
normally distributed but with no known standard deviation,
can we claim that life expectancy in Urbana is 70 years or is it
higher? Use α = 5%.

We have the same null and alternate hypotheses as in the pre-
vious case, because it is again one-sided. However, now, we
have a different test statistic:

H0 : µ = 70 H1 : µ > 70

T0 =
71.8− 70
9/
√

16
= 0.8.

The corresponding critical value we want to find is tα,n−1 =

t0.05,15 = 1.753. Due to that, we cannot reject the hypothesis, as
T0 ≤ tα,n−1.

Much like what we did earlier, we will again build a confidence
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interval around the unknown mean. We’d have:

[0, U] =

[
0, µ0 + tα,n−1

s√
n

]
= [0, 73.94] .

Note how the observed sample average is X = 71.8 years and it
totally is part of the confidence interval. This is another way we
could have deduced that we cannot reject the hypothesis.

Not normally distributed population

Not normally distributed population mean hypothesis testing

Null hypothesis: Test statistic: Distribution:

H0 : µ = µ0. Z0 =
X− µ0

s√
n

. Z0 ∼ N (0, 1) .

H1 Rejection region P-value
µ 6= µ0 |Z0| > zα/2 2 · (1−Φ(|Z0|))
µ > µ0 Z0 > zα 1−Φ(Z0)

µ < µ0 Z0 < −zα Φ(Z0)

The only difference from the first case? We need a bigger sample
size (say, n ≥ 30) and we do not necessarily need the variance. In-
stead, we may estimate it (if unknown) as the sample variance s2 and
use it instead.

Hypothesis testing for normally distributed population variances

We are ready to show the last hypothesis testing procedure for a sin-
gle population! For the variance of a normally distributed population
we may reject or fail to reject a hypothesis on its true value following
(again) the same logic as for its confidence interval, which was based
on the χ2 distribution.
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Normally distributed population variance hypothesis testing

Null hypothesis: Test statistic: Distribution:

H0 : σ2 = σ2
0 . χ2

0 =
(n− 1) s2

σ2
0

. χ2
0 ∼ χ2

n−1.

H1 Rejection region CI region
σ2 6= σ0 χ2

0 > χ2
α/2,n−1

[
(n−1)σ2

0
χ2

α/2,n−1
, (n−1)σ2

0
χ2

1−α/2,n−1

]
χ2

0 < χ2
1−α/2,n−1

σ2 > σ0 χ2
0 > χ2

α,n−1

[
(n−1)σ2

0
χ2

α,n−1
,+∞

)
σ2 < σ0 χ2

0 < χ2
1−α,n−1

(
−∞, (n−1)σ2

0
χ2

1−α,n−1

]

Hence, we would reject the null hypothesis whenever the χ2
0 statis-

tic is inside the rejection region, or whenever the observed sample s2

is outside the confidence interval region.

A life expectancy example

We select a random sample of 16 recorded deaths in the city of
Urbana. The sample average is 71.8 years old and the sample
standard deviation is 9 years. Assuming that life expectancy is
normally distributed but with no known standard deviation,
can we claim that the standard deviation is equal to 7 years?
Or is it different than that? Use α = 5%.

We have:

H0 : σ2 = 49 H1 : σ2 6= 49

The test statistic is:

χ2
0 =

15 · 81
49

= 24.796.

The corresponding critical value is χ2
α/2,n−1 = χ2

0.025,15 =

27.488 and χ2
1−α/2,n−1 = χ2

0.975,15 = 6.262. Hence, we cannot re-
ject the hypothesis, as χ2

1−α/2,n−1 ≤ χ2
0 ≤ χ2

α/2,n−1.

Like we did earlier, note that building the confidence interval we
would have gotten:

[L, U] =

[
15 · 49
27.488

,
15 · 49
6.262

]
= [26.74, 117.37] ,

which includes the sample variance s2 = 81.
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28-29. Hypothesis testing for
two populations

Learning objectives

After lectures 28–29, we will be able to:

• Fail to reject or reject hypotheses for two populations:

– for the difference between their means.

– for the difference between their proportions.

– for the ratio of their variances.

• Use this statistical tool to compare two populations and
make decisions about them.

Motivation: weather differences

You may have heard people say something along the lines “The
weather is so different nowadays!” or “It used to snow during Hal-
loween when I was a kid!” or even something like “Last year, it was
much warmer/colder!”. How can we employ statistics and probabil-
ity theory to reject or fail to reject such claims? Could we somehow
compare the mean temperature/snow/humidity/etc. from one year
to the next?

Motivation: electoral considerations

During an election, political parties and candidates would like to
know how specific populations behave. Do farmers overwhelmingly
care about one item versus another? How about first-generation
college students? We then would like to check and compare different
populations, hopefully to find common ground that can help us
address as many issues as possible, without alienating one group or
another.

Motivation: online education and audiovisual tools

It is easy to completely demonize or completely agree with online
education and its tools. What is more difficult is to quantify what
happens with the variability of the performance of students in an
online setting with the audiovisual tools at our disposal. Can we test
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the claim whether properly designed online courses lead to lower
variability in the learning of students?

Hypothesis testing for two populations

I know we just discussed some motivating examples. Let me state
them here in a more specific setting:

• Is the weather in Chicago significantly different than it was 10

years ago?

• Do students who have access to audiovisual aids for a class per-
form better than students who do not?

• Does the variability in the duration of a call decrease when the
signal reception is improved?

• Do voters from one group overwhelmingly prefer one candidate
over another in a local election compared to another group of
voters?

All of the above examples have one thing in common: they deal
with two populations and how they compare and contrast. Like we
did in the past, we will again deal here with hypothesis testing for
means, variances, and proportions. Visually, we discuss the follow-
ing:

Hypothesis

tests

On µ1 − µ2

Normally distributed

On σ2
1 /σ2

2 On p1 − p2

Known σ1, σ2

Z statistic

Not known σ1 = σ2

t statistic

Not known σ1 6= σ2

Approximate

t statistic

Normal distribu-

tion

Normal

F statistic

Large sample

Large sample

Z statistic

Hypothesis testing for means of two normally distributed popula-
tions

We have three cases (consult the earlier figure). They are:
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1. normally distributed populations with known variances σ2
1 , σ2

2 .

2. normally distributed populations with unknown variances that
are known to be equal, that is unknown σ2

1 = σ2
2 .

3. normally distributed populations with unknown variances that
are not known to be equal, that is unknown σ2

1 6= σ2
2 .

Their derivation is again based on their confidence intervals, so we
simply provide a summary of their results.

Normally distributed populations with known variances σ2
1 , σ2

2

A quick review before getting started.

• Assume two normally distributed populations X, Y with mean
µ1, µ2 and standard deviations σ1, σ2. Then:

1. Pick a sample of n1 elements from X: X ∼ N
(
µ1, σ2

1 /n1
)
.

2. Pick a sample of n2 elements from Y: Y ∼ N
(
µ2, σ2

2 /n2
)
.

• Additionally, for combinations of the two populations, we have:

1. X + Y ∼ N
(
µ1 + µ2, σ2

1 + σ2
2
)
.

2. X−Y ∼ N
(
µ1 − µ2, σ2

1 + σ2
2
)
.

3. aX + bY ∼ N
(
aµ1 + bµ2, a2σ2

1 + b2σ2
2
)
.

• Finally, consider we pick a sample n1 from X and a sample n2

from Y:

1. Pick a sample of n1 elements from X: X ∼ N
(
µ1, σ2

1 /n1
)
.

2. Pick a sample of n2 elements from Y: Y ∼ N
(
µ2, σ2

2 /n2
)
.

3. Combine to get that

X−Y ∼ N
(
µ1 − µ2, σ2

1 /n1 + σ2
2 /n2

)
.
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Means with known σ2
1 , σ2

2

Null hypothesis: Test statistic: Distribution:

H0 : µ1 − µ2 = ∆0. Z0 =

(
X1 − X2

)
− ∆0√

σ2
1 /n1 + σ2

2 /n2

. Z0 ∼ N (0, 1) .

H1 Rejection region P-value
µ1 − µ2 6= ∆0 |Z0| > zα/2 2 · (1−Φ(|Z0|))
µ1 − µ2 > ∆0 Z0 > zα 1−Φ(Z0)

µ1 − µ2 < ∆0 Z0 < −zα Φ(Z0)

Like in the single population cases, we should reject the null hy-
pothesis under the following conditions:

1. Check whether the observed sample average X or the Z0 statistic
fall in the rejection region.

2. Calculate the P-value and compare to α.

Vaping

Two vaping products are being tested for their relationship
with the outbreak of lung injury (see this CDC link). The first
product has been responsible for more illnesses, so we are
interested in seeing whether the nicotine content is at least 0.2
milligrams higher than in the second product. We have found
that n1 = 50 products of the first kind had an average nicotine
content of X1 = 2.61 milligrams and n2 = 40 products of the
second kind had X2 = 2.38 milligrams. Using α = 0.05, can
we claim that the first product has 0.2 milligrams of difference
or is it higher? Assume that standard deviations per product
are known and equal to σ1 = 0.8 and σ2 = 1.1 milligrams,
respectively.

We want to compare two population means: more specifically
we want to see whether the difference is ∆0 = 0.2. We then
have:

H0 : µ1 − µ2 = 0.2 H1 : µ1 − µ2 > 0.2.

We pick:

• from the first population: n1 = 50, X1 = 2.61, σ1 = 0.8

• from the second population: n2 = 40, X2 = 2.38, σ2 = 1.1

https://www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html
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Vaping

Now, calculate the test statistic as:

Z0 =
2.61− 2.38− 0.2√

0.82

50 + 1.12

40

=
0.03
0.21

= 1/7 = 0.14.

It is one-sided, so find critical value zα = z0.05 = 1.645. Seeing
as Z0 ≤ zα, we fail to reject.

We did not end up needing this, but we could have used the cor-
responding confidence intervals to decide whether we want to reject
a hypothesis or not. How? First, calculate X1 − X2. Then, check the
CI region: if the difference of the sample averages falls within or the
confidence interval, then we fail to reject the null hypothesis.

H1 CI region

µ1 − µ2 6= ∆0 (µ1 − µ2)± zα/2

√
σ2

1 /n1 + σ2
2 /n2

µ1 − µ2 > ∆0

(
−∞, (µ1 − µ2) + zα

√
σ2

1 /n1 + σ2
2 /n2

]
µ1 − µ2 < ∆0

[
(µ1 − µ2)− zα

√
σ2

1 /n1 + σ2
2 /n2,+∞

)

Normally distributed populations with unknown, but equal, variances σ2
1 =

σ2
2

Let’s try to derive the procedure now! First, assume that σ1 = σ2 = σ.
Then the test statistic can be written as:

Z0 =

(
X1 − X2

)
− ∆0

σ
√

1
n1

+ 1
n2

.

You’ve guessed the next step! If σ is unknown, I need to somehow
estimate it.. Can we use a sample standard deviation? Recall that
the sample standard deviation s can be a good estimator for the
unknown population standard deviation σ. However, that was for a
single population. What can we do here?

Since we have two samples from two populations, each with their
own (possibly different) sample standard deviations s1, s2, we use the
so-called pooled estimator, where we treat both as if they are one
population. We then get:

s2
p =

(n1 − 1) s2
1 + (n2 − 1) s2

2
n1 + n2 − 2

.
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A couple of notes:

• s2
p is a weighted average of the two variances s1, s2.

• Letting n1 = n2 leads to s2
p =

(
s2

1 + s2
2
)

/2.

Finally, as we are moving from known variances to unknown ones,
we also need to account for it by moving from a normal distribution
(and its z values) to a Student’s T distribution (and the correspond-
ing t values). Note that the distribution has n1 + n2 − 2 degrees of
freedom. Overall we have:

Means with unknown but equal σ2
1 = σ2

2

Null hypothesis: Test statistic: Distribution:

H0 : µ1 − µ2 = ∆0. T0 =

(
X1 − X2

)
− ∆0

sp
√

1/n1 + 1/n2
. T0 ∼ Tn1+n2−2.

H1 Rejection region P-value
µ1 − µ2 6= ∆0 |T0| > tα/2,n1+n2−2 2 ·

(
1− Tn1+n2−2(|T0|)

)
µ1 − µ2 > ∆0 T0 > tα,n1+n2−2 1− Tn1+n2−2(T0)

µ1 − µ2 < ∆0 T0 < −tα,n1+n2−2 Tn1+n2−2(T0)

Let us not forget that we may also decide to reject or not based on
whether X1− X2 falls within or outside the corresponding confidence
interval!

H1 CI region

µ1 − µ2 6= ∆0 (µ1 − µ2)± tα/2,n1+n2−2sp

√
1

n1
+ 1

n2

µ1 − µ2 > ∆0

(
−∞, (µ1 − µ2) + tα,n1+n2−2sp

√
1

n1
+ 1

n2

]
µ1 − µ2 < ∆0

[
(µ1 − µ2)− tα,n1+n2−2sp

√
1

n1
+ 1

n2
,+∞

)
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Catalyst comparison

Two catalysts, A and B, are being compared to see how they
affect the mean yield of a chemical process. We have devised a
pilot operation and results using the two catalysts are shown
below for 8 runs. Using α = 0.05 and assuming unknown
but equal standard deviations, can we deduce that the two
catalysts affect the yield differently?

Run A B Run A B
1 91.5 89.19 5 91.79 97.19

2 94.18 90.95 6 89.07 97.04

3 92.18 90.46 7 94.72 91.07

4 95.39 93.21 8 89.21 92.75

We have:

• Population 1 for Catalyst A with: n1 = 8, X1 = 92.255, s1 =

2.39

• Population 2 for Catalyst B with: n2 = 8, X2 = 92.7325, s2 =

2.98

Recall that we know that σ1 = σ2, but this will not imply that
the sample standard deviations will be equal too!
Now, on to formulating the hypothesis. We have:

H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 6= 0.

The pooled standard deviation is:

sP =

√
(n1 − 1) s2

1 + (n2 − 1) s2
2

n1 + n2 − 2
=

√
7 · 2.392 + 7 · 2.982

14
= 2.7.

With all that, we get the corresponding test statistic as:

T0 =
92.255− 92.7325− 0

2.7
√

1
8 + 1

8

=
−0.4775

1.35
= −0.35.

Since α = 0.05 and we have a two-sided hypothesis, we need
to identify the proper critical value as tα/2,14 = t0.025,14 =

2.145. As −tα/2,14 ≤ t0 ≤ tα/2,14, we fail to reject.
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Normally distributed populations with unknown, and not necessarily equal,
variances σ2

1 6= σ2
2

In this case, things get a little more complicated. Had we known
what σ1, σ2 were:

Z0 =

(
X1 − X2

)
− ∆0√

σ2
1 /n1 + σ2

2 /n2

∼ N (0, 1) .

Replacing σ1, σ2 with their sample counterparts s1, s2, we get:

T0 =

(
X1 − X2

)
− ∆0√

s2
1/n1 + s2

2/n2

∼ Tv.

We then say that T0 is distributed approximately as the T distribu-
tion, but with degrees of freedom equal to v:

v =

(
s2

1/n1 + s2
2/n2

)2

(s2
1/n1)

2

n1−1 +
(s2

2/n2)
2

n2−1

.

This number will usually be fractional – we typically round down
when needing to consult a t-table.

Means with unknown and not necessarily equal σ2
1 6= σ2

2

Null hypothesis: Test statistic: Distribution:

H0 : µ1 − µ2 = ∆0. T0 =

(
X1 − X2

)
− ∆0√

s2
1/n1 + s2

2/n2

. T0 ∼ Tv.

H1 Rejection region P-value
µ1 − µ2 6= ∆0 |T0| > tα/2,v 2 · (1− Tv(|T0|))
µ1 − µ2 > ∆0 T0 > tα,v 1− Tv(T0)

µ1 − µ2 < ∆0 T0 < −tα,v Tv(T0)

In the above, we calculate the approximate degrees of freedom
v as:

v =

(
s2

1/n1 + s2
2/n2

)2

(s2
1/n1)

2

n1−1 +
(s2

2/n2)
2

n2−1

.

Let’s put that to the use. We will follow the same example as be-
fore, however now we will drop the assumption that the two vari-
ances are equal.
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Catalyst comparison

Two catalysts, A and B, are being compared to see how they
affect the mean yield of a chemical process. We have devised a
pilot operation and results using the two catalysts are shown
below for 8 runs. Using α = 0.05 and assuming unknown
standard deviations, can we deduce that the two catalysts
affect the yield differently?

Run A B Run A B
1 91.5 89.19 5 91.79 97.19

2 94.18 90.95 6 89.07 97.04

3 92.18 90.46 7 94.72 91.07

4 95.39 93.21 8 89.21 92.75

We follow a very similar logic to earlier. However, we now
will need the approximate degrees of freedom before proceed-
ing (plus the T0 statistic calculation changes slightly). We have
the same hypothesis H0 : µ1 − µ2 = 0 H1 : µ1 − µ2 6= 0
and the same n1 = 8, X1 = 92.255, s1 = 2.39, n2 = 8, X2 =

92.7325, s2 = 2.98. Here is where things change now:

1. Calculate test statistic:

T0 =
92.255− 92.7325− 0√

2.392

8 + 2.982

8

=
−0.4775

1.35
= −0.35.

2. Calculate approximate degrees of freedom:

v =

(
s2

1/n1 + s2
2/n2

)2

(s2
1/n1)

2

n1−1 +
(s2

2/n2)
2

n2−1

=
(0.714 + 1.11)2

0.7142

7 + 1.112

7

=

=
1.8242

0.073 + 0.176
= 13.361→ 13.

Finally, we find tα/2,v = t0.025,13 = 2.16. Becase −tα/2,13 ≤ t0 ≤
tα/2,13, we fail to reject.

Hypothesis testing for the ratio of the variances of two normally dis-
tributed populations

As must be obvious by now, we are taking each two population con-
fidence interval and adapting it to the hypothesis testing procedure.
Next up is the ratio of the two unknown variances of two normally
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distributed populations.

Ratio of variances

Null hypothesis: Test statistic: Distribution:

H0 : σ2
1 = σ2

2 . F0 =
s2

1
s2

2
. F0 ∼ Fn1−1,n2−1.

H1 Rejection region
σ2

1 6= σ2
2 F0 > fα/2,n1−1,n2−1 or

F0 < f1−α/2,n1−1,n2−1

σ2
1 > σ2

2 F0 > fα,n1−1,n2−1

σ2
1 < σ2

2 0 F0 < f1−α,n1−1,n2−1

Variability in thickness

The variability in the thickness of oxide layers in semiconduc-
tor wafers is a critical characteristic, where low variability is
desirable. A company is investigating two different ways to
mix gases so as to reduce the variability of the oxide thick-
ness. We produce 16 wafers with each gas mixture and our
results indicate that the standard deviation is s1 = 1.96Å and
s2 = 2.13Å for the two mixtures. Using α = 0.05, is there
evidence to indicate that either gas is preferable for better
wafers?

We have two populations: i) population 1 with: n1 = 16, s1 =

1.96 and ii) population 2 with: n2 = 16, s2 = 2.13. As always,
we begin by formulating our hypothesis as

H0 : σ2
1 = σ2

2 H1 : σ2
1 6= σ2

2 .

Proceed to calculate our test statistic, based on the sample
variances as:

F0 =
s2

1
s2

2
=

1.962

2.132 = 0.8467.

Since this is a two-sided hypothesis test, we need two criti-
cal values (recall that the F distribution is not symmetric!):
fα/2,n1−1,n2−1 = f0.025,15,15 = 2.86 and f1−α/2,n1−1,n2−1 =

1
fα/2,n2−1,n1−1

= 1
2.86 = 0.35. Seeing as f1−α/2,n1−1,n2−1 ≤ F0 ≤

fα/2,n1−1,n2−1, we fail to reject: that is, we do not have enough
evidence to claim that the two variances are not equal.
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Hypothesis testing for the difference in the proportions of two pop-
ulations

We finish our venture in two population hypothesis testing with
proportions. It should come as no surprise that this also emulates
the discussion of the two population proportions confidence interval
we had seen earlier in the class! A few definitions and assumptions
before we start:

1. Large samples from the two populations (ni pi ≥ 30 and n1 (1− pi) ≥
30 for both populations i = 1, 2).

2. sample size and observed proportion from population 1: n1, p̂1,
and sample size and observed proportion from population 2:
n2, p̂2.

3. a (hypothesized) difference p1 − p2 = ∆0.

4. a pooled proportion estimator in the form of

p̂ =
n1 p̂1 + n2 p̂2

n1 + n2
.

• Much like a weighted average of the two observed proportions.

With these available, we may derive the hypothesis testing proce-
dure as follows:

Proportions of two populations, p1, p2

Null hypothesis: Test statistic: Distribution:

H0 : p1 − p2 = ∆0.
Z0 =

( p̂1 − p̂2)− ∆0√
p̂ (1− p̂)

(
1

n1
+ 1

n2

) .
Z0 ∼ N (0, 1) .

H1 Rejection region P-value
p1 − p2 6= ∆0 |Z0| > zα/2 2 · (1−Φ(|Z0|))
p1 − p2 > ∆0 Z0 > zα 1−Φ(Z0)

p1 − p2 < ∆0 Z0 < −zα Φ(Z0)
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Politicians favorability ratings

A recent survey asked people in Urbana and Champaign
whether they like their elected officials. Out of 118 Urbana
residents, 37 said yes; for Champaign citizens there were 135

residents, among whom 61 said yes. Is there significant evi-
dence (using α = 0.05) to assume that Champaign’s citizens
showcase higher approval rates for their elected officials?

First collect our information:

• Urbana: n1 = 118, p̂1 = 37
118 = 0.314.

• Champaign: n2 = 135, p̂2 = 61
135 = 0.452.

We formulate the hypothesis as

H0 : p1 = p2 H1 : p1 < p2.

Then, calculate the pooled proportion estimator as p̂ =
37+61

118+135 = 98
253 = 0.387. We are now ready to calculate the

test statistic:

Z0 =
( p̂1 − p̂2)− ∆0√

p̂ (1− p̂)
(

1
n1

+ 1
n2

) =

=
0.138√

0.387 · 0.613 · (1/118 + 1/135)
= 2.25.

To reject or fail to reject, we need the critical value for
α = 0.05:zα = z0.05 = 1.64. Because Z0 > zα, we have to
reject the hypothesis: hence, we deduce that Champaign does
indeed have higher approval rates for elected officials (under
α = 0.05)!
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30-31. Linear regression and
significance

Learning objectives

After lectures 30-31, we will be able to:

• Explain the difference between regression and classification.

• Describe regression and linear regression.

• Derive, use, and interpret the results of the least squares
line.

• Check whether a simple linear regression is significant or
not.

Motivation: Physical activity and obesity

See below a figure representing the different levels of physical ac-
tivity in each of the 50 states (x axis) and the resulting obesity rates
(y axis). Do we see a relationship between activity and obesity? Is it
linear? And, very importantly, is it significant?
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Motivation: Education level and income

Is there a relationship between the annual income of a person and
their education level? And, if so, can we predict the income of a
person before and after they have obtained a Master’s degree?

Model building

In the second part of the class, we saw descriptive statistics. Visually,
see Figure 81, where from a sample we obtain a series of descriptive
information (referred to as summary statistics), that we then present
in a pictorial form (for ease of use and understanding).

Figure 81: A visual representation of descriptive statistics.

Sample

X1, X2, . . . , Xn
⇒

• Summary statistics:

– mean

– variance

– median

– mode

– percentiles

⇒

Then, in the third part of the class, we moved towards inferential
statistics. Again, we represent this part visually in Figure 82.

Figure 82: A visual representation of inferential statistics.

From sample:

X1, X2, . . . , Xn

Infer

⇒
To a population:

µ, σ, p

Point estimation:

Θ̂

• bias.

• variance.

• MSE.

Interval estimation:

Confidence interval

• unknown mean, var.,
proportion.

• confidence level 1− α.

Hypothesis test:

H0 vs. H1

• one or two populations.

• mean, var, proportion.

• α, β, P-values.

There are three classifications of modern statistical methods:

1. Descriptive statistics: techniques to describe and visualize data.
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2. Inferential statistics: techniques to draw conclusions for a large,
unknown population based on observations of a smaller group
(sample).

3. Model building: techniques to find relationships between data
points, measure how strong these relationships are, and build
models that can make predictions about the future.

In this last part of the class, we will focus on model building.
Model building has three goals then:

• Goal #1: investigate whether a relationship exists between vari-
ables of our model.

Does a relationship exist?

– Do students perform better in tests that are in the morn-
ing or in the evening? Does time of day affect perfor-
mance?

– Does cold weather increase the number of accidents?
Does the temperature affect driving patterns? Or do
weather conditions, regardless of temperature, affect
driving?

– Does physical activity affect obesity rates? Does income
affect obesity rates?

• Goal #2: measure how strong the relationship is.

Strong relationship?

– Obesity rates have been shown to depend on physical
activity, income, age, education, built environment, etc.

– Physical activity and age have been found to be more
important.

• Goal #3: predict an outcome given data.

Predicting

– Given physical activity levels, predict the obesity rates
for a specific state.

– Given the weather conditions, predict the number of
accidents at an interstate.
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We define two types of models: regression and classification.
They are visually contrasted in Figures 83 and 84. In the remainder
of the semester, we will focus solely on regression.

1. Regression: for given values of independent variables xi, predict
the value of dependent variable y. Typically, regression applies to
continuous y variables.

Figure 83: A possible regression line helping us predict the height of someone given
their weight.
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2. Classification: for given values of independent variables xi, predict
the class where dependent variable y belongs to. Typically, classifica-
tion applies to discrete y variables.

In the remainder of today’s lecture, we shall focus on regression
models.

Linear regression

Before we begin with linear regression, a really quick overview of
some necessary notation. We will assume the existence of two types
of variables:

1. independent variables x: these may also be called predictor vari-
ables or regressors.

2. dependent variables y: sometimes also referred as response vari-
ables, outcome variables, or regressands.
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Figure 84: An example of a classification problem. The line here separates our observa-
tions in two classes (green and red).
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Typically, independent variables are given to us in an attempt to
predict the value of a dependent variable. Of course, this depends on
the specifics of the problem we are tackling at each time!

Independent vs. dependent variables

• Does the duration of a call (y) depend on the reception
signal (x)?

• Does income (y) depend on years of education (x)?

• Does obesity rate (y) depend on income (x1), days of physi-
cal activity per week (x2), and age (x3)?

As we note with the earlier example, it is not necessary to only
have one independent variable x! Formally, we define regression as
follows:

Definition 68 (Regression) Regression is a statistical technique that is
used to model the relationships between the response variable (also called the
dependent variable) y and the predictor variables (also called the indepen-
dent variables) x.

We may define multiple types of regression:

1. Simple linear regression: one independent and one dependent
variables tied together through a linear relationship.

2. Multiple linear regression: multiple independent and one depen-
dent variables tied together using a linear relationship.
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3. Polynomial regression: one or more independent and one depen-
dent variables tied together using a polynomial relationship.

4. Logistic regression: one or more independent and one dependent
variable tied together using any relationship. However now, the
dependent variable takes on two discrete values (true or false,
healthy or unhealthy, etc.). This is also called a dichotomous re-
gression.

Simple linear regression

In simple linear regression, we want to express the dependent vari-
able y as a linear function of the independent variable x. In mathe-
matical terms, we are looking for coefficients β0, β1 such that:

y = β0 + β1x.

A webstore example

A webstore has collected the following data on the weekly
visitors of the website and the profits from the past 20 weeks.
They want to investigate that relationship and see whether
they can direct more clicks towards their store. The data they
have collected is as follows:

n Visitors Profit n Visitors Profit
1 907 11.2 2 926 11.05

3 506 6.84 4 741 9.21

5 789 9.42 6 889 10.08

7 874 9.45 8 510 6.73

9 529 7.24 10 420 6.12

11 679 7.63 12 872 9.43

13 924 9.46 14 607 7.64

15 452 6.92 16 729 8.95

17 794 9.33 18 844 10.23

19 1010 11.77 20 621 7.41

What is the relationship between the profit and the number of
visitors in their website?

Let’s try this again, from a visual perspective...
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Some of the questions you may have already:

1. Do we see a relationship between profits and visits?

2. Does the relationship appear to be linear?

3. Does the relationship appear to be strong?

4. Can we predict profits based on the number of visitors?

Our answers must have been Yes, Yes, Yes, and We sure hope
so. Since there appears to be a linear relationship, what is the best
line we can come up with to connect the dots? Let us try some and
discuss why they work and why they do not work.

Line 1:
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8
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12

Bad line as it does not seem to capture the data provided.

Line 2:
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Better than before, but it still seems to miss the “trend” of the
data, doesn’t it?

Line 3:
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This one seems to follow the trend, but is underestimating the
outcome at each point...

Line 4:
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The best fit line is the one that minimizes the deviations of the
data from the estimated regression line.

Let’s see what that means from a mathematical point of view.
Based on our available data, we have n pairs of independent variables
(xi, yi), for i = 1, . . . , n. If our line is correct, then we should expect
yi = β0 + β1xi, no?

However, we recall that real life is not modeled exactly and neatly
by a model, so maybe we can incorporate some noise? In that case,
we now should get yi = β0 + β1xi + εi. In this last equation,β0 is
the intercept, β1 is the slope; and εi is the noise related to data point
(xi, yi).
In order for the quantity referred to as noise to make sense, we need
to make some assumptions. Namely, we have for all noises εi that:

• they are independent normally distributed random variables;

• with zero mean;

• and with the same variance;

• εi ∼ N
(
0, σ2).

Let us consider the total “error”. What could this mean? We could
potentially define it as:

• the sum of all errors (positive or negative): L =
n
∑

i=1
εi.

• the sum of all absolute errors: L =
n
∑

i=1
|εi| .

• the sum of all squared errors: L =
n
∑

i=1
ε2

i .
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The last one is called the least squares error. Recall that

yi = β0 + β1xi + εi =⇒ εi = yi − β0 − β1xi.

Hence, we may derive for the least squares error:

L =
n

∑
i=1

ε2
i =

n

∑
i=1

(yi − β0 − β1xi)
2

A quadratic term! And one that we need to minimize in order to
identify the least squares line. What are our unknowns? Those would
be the slope and the intercept, β0 and β1. And what are our known
parameters? Of course all the pairs (xi, yi) for all i = 1, . . . , n known
data points.

Finally, how can we minimize L =
n
∑

i=1
ε2

i =
n
∑

i=1
(yi − β0 − β1xi)

2?

We could take the derivative for each of the unknowns and equate to
zero, leading to:

∂L
∂β1

= −2
n

∑
i=1

(
yi − β̂0 − β̂1xi

)
xi = 0 =⇒

=⇒ β̂1 =
n

n
∑

i=1
xiyi−

(
n
∑

i=1
xi

)(
n
∑

i=1
yi

)
n

n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2

∂L
∂β0

= −2
n

∑
i=1

(
yi − β̂0 − β̂1xi

)
= 0 =⇒

=⇒ β̂0 = y− β̂1x
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Practice with least squares

Earlier, we saw a webstore and part of the data they had col-
lected about the number of visitors and their profits. As a
reminder, here is the table with the data again:

n Visitors Profit n Visitors Profit
1 907 11.2 2 926 11.05

3 506 6.84 4 741 9.21

5 789 9.42 6 889 10.08

7 874 9.45 8 510 6.73

9 529 7.24 10 420 6.12

11 679 7.63 12 872 9.43

13 924 9.46 14 607 7.64

15 452 6.92 16 729 8.95

17 794 9.33 18 844 10.23

19 1010 11.77 20 621 7.41

What is the least squares line?

First, calculate ∑ xi = 907 + 506 + . . . = 14623, ∑ yi = 11.2 +

6.84 + . . . = 176.11, ∑ xiyi = 907 · 11.2 + 506 · 6.84 + . . . =

134127.9, ∑ x2
i = 9072 + 5062 + . . . = 11306209.

• β̂1 =
n

n
∑

i=1
xiyi−

(
n
∑

i=1
xi

)(
n
∑

i=1
yi

)
n

n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2 = 0.0087.

• β̂0 = y− β̂1x = 8.8055− 0.0087 · 731.15 = 2.423.

Or, visually:
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How can we use the regression line to help predict outcomes? Well,
for a given value x, we may now predict y by plugging x in the re-
gression line formula..

Using the regression line

For the previous webstore, how many profits should they
anticipate on a very good day with 1200 visitors?

ŷ = β̂0 + β̂1x = 2.423 + 0.0087 · 1200 = 12.863.

From now on, we will use the following terminology:

1. observed values:
yi = β0 + β1xi + εi,

where (xi, yi) are the pairs of independent and dependent vari-
ables and εi the noise for i = 1, . . . , n.

2. fitted values:
ŷi = β̂0 + β̂1xi,

where β̂0 and β̂1 are the intercept and slope.

3. residuals/errors:
ei = yi − ŷi,

the difference between the observed and the fitted dependent
values.

4. sum of squares of errors:

SSE =
n

∑
i=1

e2
i =

n

∑
i=1

(yi − ŷi)
2 .

Significance of simple linear regression

We got our intercept and slope; but is the regression line we got
significant. What does that mean? What we want to ask is: “is there
enough evidence to suggest that x and y are related?” Or does it
appear to be just a random phenomenon, a coincidence?

Well, every time we want to check if we have enough evidence
to “reject” something, we need hypothesis testing. When are x and
y unrelated? When β1 = 0! So, this is what we will formulate a
hypothesis for.

H0 : β1 = 0 vs. H1 : β1 6= 0.

An example of what this looks like is presented below in Figure 85.
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Figure 85: An example of an insignificant regression (left), where the slope is 0, and an
example of a significant regression (right), where the slope is non-zero.
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Before we proceed with this, let us redefine the slope calculations.
This will come in handy later. We have:

β̂1 =

n
n
∑

i=1
xiyi −

(
n
∑

i=1
xi

)(
n
∑

i=1
yi

)
n

n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2 =

n
∑

i=1
(xi − x) (yi − y)

n
∑

i=1
(xi − x)2

.

If we define:

• Sxy =
n
∑

i=1
(xi − x) (yi − y)

• Sxx =
n
∑

i=1
(xi − x)2

then we may get that:

β̂1 =
Sxy

Sxx
.

So, how is β̂1 distributed as? Recall that εi ∼ N
(
0, σ2). We then

have that:

β̂1 ∼ N

β1, σ2
n
∑

i=1
(xi−x)2

→ N (β1, σ2

Sxx

)
Unfortunately, σ2 is not known – we will need some way to esti-

mate it. Luckily, there is an easy to calculate estimator. We will need
to keep track of the following notions:

• Recall that a sample variance can be calculated as σ̂2 =

n
∑

i=1
(xi−x)2

n−1 ,
where n− 1 are the degrees of freedom as we needed to estimate
one parameter in the calculation.



ie 300 319

• In our case, we want to compare yi to the average y value. SSE =
n
∑

i=1
(yi − ŷi)

2. However, it comes with n− 2 degrees of freedom as

we needed to estimate two parameters in its calculation (β̂0, β̂1).

• Hence, we may use SSE
n−2 as an estimator for σ2!

This last quantity is called the mean square error:

MSE =
SSE

n− 2

and we can show that
E [MSE] = σ2,

which serves to show that it is an unbiased estimator for our un-
known variance:

σ̂2 = MSE.

Finally, we are ready to pose the hypothesis test for the signifi-
cance of our regression.

Simple linear regression significance

Null hypothesis: Test statistic: Distribution:

H0 : β1 = 0. T0 =
β̂1√

MSE/Sxx
. T0 ∼ Tn−2.

H1 Rejection region CI region

β1 6= 0 |T0| > tα/2,n−2

[
β̂1 − tα/2,n−2

√
MSE
Sxx

,

β̂1 + tα/2,n−2

√
MSE
Sxx

]
β1 > 0 T0 > tα,n−2

(
−∞, β̂1 + tα,n−2

√
MSE
Sxx

]
β1 < 0 T0 < −tα,n−2

[
β̂1 − tα,n−2

√
MSE
Sxx

,+∞
)

Note that this hypothesis test can be easily adapted to test for
any value (not just zero!). How?

Let us put this to the test.
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Is the regression significant?

Consider the following points:

x y
1 7.6
9 10.24

2 7.3
7 8.97

6 8.74

7 8.99

8 9.93

1 8.47
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1. Calculate β̂0, β̂1.

2. Using α = 0.10, is there significant evidence that β1 6= 0?

3. Build a 90% confidence interval around β̂1.

We’ll again need to calculate: n = 8, ∑ xi = 41, ∑ yi =

70.24, ∑ xiyi = 380.43, ∑ x2
i = 285.

First, to calculate β̂1:

β̂1 =

n
n
∑

i=1
xiyi −

(
n
∑

i=1
xi

)(
n
∑

i=1
yi

)
n

n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2 = 0.273.

Now, we can calculate β̂0:

β̂0 = y− β̂1x =
70.24

8
− 0.273 · 41

8
= 7.381.

Overall: ŷ = 7.381 + 0.273 · x̂.

0 2 4 6 8 10
0

5

10

15



ie 300 321

Is the regression significant?

Recall that for our hypothesis test, we will need an estimator
of the variance of the error σ2..

• σ̂2 = SSE
n−2 .

To calculate SSE, consider the original data, and append a new
column (called ŷ). Populate it with the result ŷi = β̂0 + β̂1 · xi:

x y ŷ
1 7.6 7.654

9 10.24 9.838

2 7.3 7.927

7 8.97 9.292

6 8.74 9.019

7 8.99 9.292

8 9.93 9.565

1 8.47 7.654

Finally,
SSE = ∑ (yi − ŷi)

2 = 1.629

and hence σ̂2 = 1.629
6 = 0.272.

We finally move to the hypothesis testing part.

H0 : β1 = 0 H1 : β1 6= 0.

• T0 = β̂1−0√
MSE/Sxx

= 0.273√
0.272/74.875

= 4.529, where Sxx =

∑ (xi − x)2 = 74.875.

• Compare to t0.05,6 = 1.943.

• Because |T0| > 1.943, we reject the null hypothesis and de-
duce that with 90% confidence β1 6= 0.

Also note that

β1 ∈ [0.273− 1.943 · 0.06, 0.273 + 1.943 · 0.06] = [0.156, 0.390] .

Wait.. So does that mean that we can also use hypothesis testing to
check whether β̂1 (the slope) has a certain value or not? The answer
is a resounding yes!
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Simple linear regression slope testing

Null hypothesis: Test statistic: Distribution:

H0 : β1 = β10. T0 =
β̂1 − β10√
MSE/Sxx

. T0 ∼ Tn−2.

H1 Rejection region CI region

β1 6= β10 |T0| > tα/2,n−2

[
β̂1 − tα/2,n−2

√
MSE
Sxx

,

β̂1 + tα/2,n−2

√
MSE
Sxx

]
β1 > β10 T0 > tα,n−2

(
∞, β̂1 + tα,n−2

√
MSE
Sxx

]
β1 < β10 T0 < −tα,n−2

[
β̂1 − tα,n−2

√
MSE
Sxx

,+∞
)

A different perspective

For the previous example we have hypothesized that the line
is 7.381 + 0.273 · x̂. New data come in and give us the follow-
ing four points: (7, 9.97) , (2, 7.95) , (5, 8.91) , (5, 8.14).

Using α = 0.05, is there enough evidence in the new data
to suggest that the slope has changed and we now have
β1 > 0.273?

Again we may calculate (for the new set of points) that:
n = 4, ∑ xi = 19, ∑ yi = 34.97, (∑ xi) · (∑ yi) = 664.43, ∑ xiyi =

170.94, ∑ x2
i = 103, (∑ xi)

2 = 361. This leads to:

• β̂1 = 4·170.94−664.43
4·103−361 = 35.61

51 = 0.379.

• β̂0 = y− β̂1x = 6.942.

We then have (yi − ŷi)
2 = (yi − 6.942− 0.379 · xi)

2, which
leads to:
• (y1 − ŷ1)

2 = 0.140

• (y2 − ŷ2)
2 = 0.062

• (y3 − ŷ3)
2 = 0.005

• (y4 − ŷ4)
2 = 0.486

This finally gives SSE = 0.694 and a σ̂ =
√

MSE =
√

SSE
n−2 =√

0.694
2 = 0.589. We are ready to formulate our hypothesis:

H0 : β1 = 0.273 H1 : β1 > 0.273
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A different perspective

On to our hypothesis testing calculations:

• the test statistic: T0 = β̂1−β10
σ̂/
√

Sxx
= 0.106

0.589/
√

12.75
= 0.643, where

Sxx = ∑ (xi − x)2 = 12.75.

• the critical value: t0.05,2 = 2.92. Recall that the hypothesis is
one-sided here.

• the comparison: we have that T0 < tα,n−2, which means
that we accept the null hypothesis.

Hence, we deduce that with 95% confidence β1 is still equal
to 0.273 (even with the new data suggesting otherwise). Also
note that

β1 ∈ (−∞, 0.273 + 2.92 · 0.165] = (−∞, 0.755] ,

which further reinforces that the new data should be even
more indicative of a change (result in β̂1 > 0.755) to accept the
change.

So.. this is how it works in simple linear regression with one depen-
dent and one independent variable. How about we generalize this to
more than just one independent variable? More on that, next time!
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32. Multiple linear regression

Learning objectives

After lecture 32, we will be able to:

• Recall the ANOVA identity.

• Recall and use the R2 and R2
adj parameters to evaluate how

good a regression is.

• Understand when to use and how to apply regression with
multiple independent variables.

• Derive, use, and interpret the results of the last squares line
for multiple independent variables.

• Perform hypothesis testing on multiple parameters of the
least squares line.

Motivation: Maintenance fees

What happens when we are trying to derive a (linear) relationship
between one dependent variable y and multiple k > 1 different in-
dependent variables xj? Well, in that case, we need multiple different
parameters (slopes), one for each independent variable!

For example, what is the linear relationship between the mainte-
nance fees (costs y) of a bank as a function of the number of the new
applications (x1) and the number of outstanding loans (x2)?

Motivation: realtor.com

Taken from , here are 8 recently (August 2019) sold homes in Urbana:

Sq. ft. Year built Garages #bedrooms #bathrooms Price
1 1547 1950 1 3 3 158500

2 1834 1957 0 4 2 183000

3 2520 1980 3 5 2.5 233000

4 985 1911 1 2 1 69000

5 1275 1968 0 3 1.5 118000

6 2337 1977 2 5 2 249900

7 1880 1967 2 3 2 175000

8 1943 1965 1 4 2.5 169900

Which one of the five predictor variables (sq. ft., year built, garages,
#bedrooms, #bathrooms) is the least important for predicting price?

www.realtor.com
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The ANOVA identity

Let us begin with an example of the calculations we will see in this
section. During the previous lecture, we saw an example that led us
to a regression line of ŷ = β̂0 + β̂1x = 7.381 + 0.273 · x

For the given data (again check the previous lecture for all the
details of this example), we finally got:

x y ŷ
1 7.6 7.654

9 10.24 9.838

2 7.3 7.927

7 8.97 9.292

6 8.74 9.019

7 8.99 9.292

8 9.93 9.565

1 8.47 7.654

We used that table to calculate SSE (the sum of squares of the error)
as:

SSE = ∑ (yi − ŷi)
2 = (7.6− 7.654)2 + (10.24− 9.838)2 + . . . = 1.629.

This would eventually be divided by 8− 2 = 6 degrees of freedom to
estimate the mean square error (MSE).

In a similar manner, we may define total sum of squares as the
sum of squares of the differences between each observed value yi

versus the expectation:

SST = ∑ (yi − y)2 .

We may also define the regression sum of squares as the sum of
squares of the differences between each fitted value ŷi versus the
expectation:

SSR = ∑ (ŷi − y)2 .

We then claim that:

SST = SSE + SSR

This is called the Analysis of Variance (ANOVA) identity and it is
immensely useful when analyzing how good our regression is.
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Using the ANOVA identity

In this example, we have already calculated the sum of
squares of errors SSE to be equal to 1.629. How about the
total sum of squares SST and the regression sum of squares
SSR?

First, begin by calculate the average y value as

y =
∑ yi

n
=

7.6 + 10.24 + . . . + 8.47
8

=
70.24

8
= 8.78.

Then:

• SST = ∑ (yi − y)2 = (7.6− 8.78)2 + (10.24− 8.78)2 + . . . +
(8.47− 8.78)2 = 7.2148.

• Using the ANOVA identity: SST = SSR + SSE =⇒ SSR =

SST − SSE = 7.2148− 1.629 = 5.5858.

Note how we could have derived SSR by applying the for-
mula and getting that SSR = ∑ (ŷi − y)2 = (7.654− 8.78)2 +

(9.838− 8.78)2 + . . . + (7.654− 8.78)2 = 5.5858, which is the
same result.

We now proceed to define an easy to compute parameter that
helps us estimate the quality of our regression line.

The R2 parameter

We want to somehow quantify how “good” a regression is. We
would like to establish some coefficient that tells us how closely
our predictions ŷ follow the real data (y). We call that parameter R2

and allow it to be in [0, 1]m where a value of 1 implies that all data
points fall on the regression line. Of course, we would like high val-
ues of R2 and we hope that they imply a good fit of the regression
line. Formally:

Definition 69 R2 is a measure of how much of the variability is accounted
for by the regression model and is calculated as:

R2 =
SSR
SST

= 1− SSE
SST

.

Recall that:

total: SST = ∑ (yi − y)2 .

error: SSE = ∑ (yi − ŷi)
2 .
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regression: SSR = ∑ (ŷi − y)2 .

R2 calculations

What is the R2 coefficient for the previous regression?

We have two ways to calculate it!

• R2 = SSR
SST

= 5.58587.2148 = 0.774.

• R2 = 1− SSE
SST

= 1− 1.629
7.2148 = 0.774.

So, how high is good enough for R2? The answer is that (as so many
other things that we have seen) “it depends!” We’ll take another look
at it (and an adjusted version) shortly.

Multiple linear regression

We now move to more than just one independent variable x. This
should make sense, as in most practical cases our “future” depends
on more than just one piece of information:

• Success in an exam is not only how much you’ve studied, but also
a function of your physical and mental health, how well rested you
are, luck, etc.

• The box office success of a movie is not only how good the movie
is, but how much budget they’ve had for advertising, the recogni-
tion of the names starring and directing, etc.

• Any more examples?

Let us begin easy with just two predictor variables x1, x2. We need
to extend our definitions from the simple case:

• We now have a triple 82 (xi1, xi2, yi), i = 1, . . . , n, that is a series of 82 Contrast with the pair (xi , yi) earlier.

n data points with provided values for x1, x2, y.

• The main idea is still the same!

yi = β0 + β1xi1 + β2xi2 + εi,

where:

– β0 is the intercept intercept;

– β1, β2 are the slopes for x1, x2, respectively;

– εi is the “noise” associated with point i.
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• Hence our goal is to find the “best” β0, β1, β2 by optimizing the
least squares function:

L =
n

∑
i=1

(yi − β0 − β1xi1 − β2xi2)
2 .

How to derive a solution here? Like earlier, we can take the proper
derivatives and set them to zero! How many derivatives, though?
Well, in this case, we need to take three derivatives:

∂L
∂β0

= 0 =⇒ −2
n

∑
i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2

)
= 0

∂L
∂β1

= 0 =⇒ −2
n

∑
i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2

)
xi1 = 0

∂L
∂β2

= 0 =⇒ −2
n

∑
i=1

(
yi − β̂0 − β̂1xi1 − β̂2xi2

)
xi2 = 0

Or, simplifying:

nβ̂0 + β̂1

n

∑
i=1

xi1 + β̂2

n

∑
i=1

xi2 =
n

∑
i=1

yi

β̂0

n

∑
i=1

xi1 + β̂1

n

∑
i=1

x2
i1 + β̂2

n

∑
i=1

xi1xi2 =
n

∑
i=1

yixi1

β̂0

n

∑
i=1

xi2 + β̂1

n

∑
i=1

xi1xi2 + β̂2

n

∑
i=1

x2
i2 =

n

∑
i=1

yixi2

This is a system of equations with three unknowns and three equa-
tions; solvable under certain conditions. However, it is much more
easily expressed in matrix form, no? Let us go back to the original
regression line equation

yi = β0 + β1xi1 + β2xi2 + εi.

Written in matrix form, we have:

y = Xβ + ε

• y =


y1

y2
...

yn

, X =


1 x11 x12

1 x21 x22
...

...
...

1 xn1 xn2

, β =

β0

β1

β2

, ε =


ε1

ε2
...

εn


Once more, we wish to find β̂0, β̂1, β̂2 such that

L =
n

∑
i=1

(yi − β0 − β1xi1− β2xi2)
2 = (y− Xβ)T (y− Xβ)
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is minimized. We may rewrite L as:

L = (y− Xβ)T (y− Xβ) =

= yTy− βTXTy− yTXβ + βTXTXβ =

= yTy− 2βTXTy + βTXTXβ

We need to take the derivative as far as vector β is concerned:

∂L
∂β

= 0 =⇒ −2XTy + 2XTXβ = 0 =⇒ XTXβ = XTy.

This last equality can be solved by taking the inverse
(
XTX

)−1 and
multiplying on the left 83 to obtain: 83 Why is that? Well, recall that Ax = b

can be solved as x = A−1b, when
matrix A is invertible!

β̂ =
(
XTX

)−1 XTy

Overall, we have shown that in general (not only for two predic-
tor variables, but for as many as we would like to), we have β̂ =(

XTX
)−1 XTy, which can be used

• in matrix form:
ŷ = Xβ̂,

• or in scalar form:

ŷi = β̂0 +
k

∑
j=1

β̂ jxij, for all i = 1, . . . , n.

Like in simple linear regression ei = ŷi − yi is the residual/error for
each observation i.

Bank maintenance fee prediction

A small bank is hypothesizing that a lot of the fees they pay
have to do with the number of loan applications they process
every month as well as the number of outstanding loans they
have going on. More specifically, they have collected data over
the last 16 months that are presented in the following table.

What is the regression line they should use? How much
money should they budget for their maintenance costs if
they expect 100 applications and 13 outstanding loans this
coming January?
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Bank maintenance fee prediction

# Applications # Outstanding Cost
80 8 2256

93 9 2340

100 10 2426

82 12 2293

90 11 2330

99 8 2368

81 8 2250

96 10 2409

94 12 2364

93 11 2379

97 13 2440

95 11 2364

100 8 2404

85 12 2317

86 9 2309

87 12 2328

First, build matrix X and calculate
(
XTX

)−1:

X =



1 93 9
1 100 10
1 82 12
1 90 11
1 99 8
1 81 8
1 96 10
1 94 12
1 93 11
1 97 13
1 95 11
1 100 8
1 85 12
1 86 9
1 87 12



,
(

XT X
)−1

=

 14.176 −0.130 −0.223
−0.130 1.429 · 10−3 −4.764 · 10−5

−0.223 −4.764 · 10−5 2.222 · 10−2

 .

Finally, we calculate XTy:

XTy =

 37577
3429550
385562

 .
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Bank maintenance fee prediction

Combining all we get:

β̂ =
(

XTX
)−1

XTy =

1566.077
7.62
8.58

 .

This in turn gives us the regression line as:

ŷ = 1566.077 + 7.62 · #new loans + 8.58 · #loans outstanding.

For January then, we should expect to pay:

ŷJan = 1566.077 + 7.62 · 100 + 8.58 · 13 = 2439.62.

The question we should be thinking about at this point: does the
ANOVA identity still hold? And how can we use that to do hypothesis
testing for the regression significance? While we are at it, what does
regression significance mean for more than one predictor variables?
Let us go ahead and answer all of these questions in the remainder of
the lecture.

The ANOVA identity still holds:

SST = SSR + SSE.

Each of the three sum of squares is calculated the same way as be-
fore. The difference lies with the degrees of freedom:

• SST : n− 1 degrees of freedom 84. 84 The same as before.

• SSR: k degrees of freedom.

• SSE: n− k− 1 degrees of freedom 85. 85 Different, as we are now estimating
k + 1 parameters. What are those? They
are the regression line intercept and
slopes: β0, β1, . . . , βk .

Due to that, the mean squares are changed and are now equal to:

• MST : SST
n−1 .

• MSR: SSR
k .

• MSE: SSE
n−k−1 .

Now, back to the derivations from the previous class. We wanted to
come up with an estimate for the (unknown!) noise standard devia-
tion σ. We came up with:

σ̂2 = MSE =
SSE

n− 2
.
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Hopefully, you see where we are going with this: our MSE is differ-
ent, but other than that the derivation holds. Hence we estimate this
standard deviation as:

σ̂2 = MSE =
SSE

n− k− 1
,

where the sum of squares of error is calculated as SSE = ∑ (yi − ŷi)
2

or, in matrix form, as SSE = yTy− β̂TXTy.
On to the significance of the regression. Recall that for a single

predictor variable our significance testing was easy: either β1 = 0
(the slope was zero, and hence insignificant) or not (the slope was
nonzero and hence it is significant). When dealing with more than
just one predictor variable, though, then all of them need to have zero
slopes for the regression to be insignificant! This leads us to:

H0 : β1 = β2 = . . . = βk = 0 vs. H1 : β j 6= 0, for at least one j.

We now make the observation that if the null hypothesis is true,
then the mean squares of the regression and the error are distributed
following a χ2 distribution, each with their own degrees of freedom:

• SSR/σ2 ∼ χ2
k , where SSR = ∑ (ŷi − y)2

• SSE/σ2 ∼ χ2
n−k−1, where SSE = ∑ (yi − ŷi)

2.

We are then comparing two population “variances” (for MSR and
MSE) and the test statistic for that is:

F0 =
SSR/k

SSE/(n− k− 1)
=

MSR
MSE

The rejection area is if F0 > fα,k,n−k−1. Some software will also return
a P-value, and the rejection criterion is simply whether P-value < α.

Multiple linear regression significance

Null hypothesis: Test statistic: Distribution:

H0 : β1 = β2 = . . . = βk = 0. F0 =
MSR
MSE

. F0 ∼ Fk,n−k.

H1 Rejection region
At least one β j 6= 0 F0 > fα,k,n−k−1
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Finally, recall R2: we have some unfinished business. We already
defined R2 = 1− SSE

SST
. We make two observations about it:

• Observation #1: R2 will always increase or stay the same with the
addition of any predictor variable.

• Observation #2: This happens even when that predictor variable is
associated with a β j that is insignificant (i.e., the slope is zero).

We hence define an adjusted R2 model, called R2
adj, that will pe-

nalize more complex regressions (that is, the use of more predictor
variables). Its definition?

R2
adj = 1− SSE/(n− k− 1)

SST/(n− 1)
.

Note how adding more predictor variables will lead to a bigger nu-
merator in the fraction which in turn will cause R2

adj to go down.
We claim that this adjusted version is more appropriate than the

simple version of R2. Why? Well, primarily because it does not nec-
essarily increase with the addition of new predictor variables, and
thus will not favor more complex models. Indeed, it will many times
decrease when an insignificant variable is entered. When R2 and R2

adj
differ by a lot, this is an indication that insignificant terms have been
added.

Let us put these things to the test in an example on the regression
line we got earlier in the bank example.
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Testing significance

In the previous bank example, we already found the line as

ŷ = 1566.077 + 7.62 · #new loans + 8.58 · #loans outstanding.

Is the regression significant using α = 0.05? What is R2 and
how does it compare with R2

adj?
We begin with the calculations of the sum of squares:

• SSE =
16
∑

i=1
(yi − ŷi)

2 = 3479

• SSR =
16
∑

i=1
(ŷi − y)2 = 44157

• Using ANOVA, SST = SSR + SSE = 47636.

Now, on to calculate the ratio of the two mean squares:

F0 =
MSR
MSE

=
SSR/2
SSE/13

= 82.5

Compared to fα,k,n−k−1 = f0.05,2,13 = 3.81, we overwhelmingly
reject. The regression is significant! Let us look at the two R2

parameter calculations:

• R2 = 1− SSE
SST

= 1− 3479/44157 = 0.921.

• R2
adj = 1− SSE/(n−k−1)

SST/(n−1) = 0.916.

Note how close the two values are, an indication that no in-
significant terms have been added.

What if we were interested in each individual coefficient one-by-
one? That is, what if we wanted to check whether the number of
new loans is significant; or whether the number of outstanding loans
is significant? First of all, let us address why this is not the same
question as the one we saw how to address earlier.

Consider a regression with k predictor variables: k − 1 of them
could be insignificant, and one of them could be very significant!
Then, the regression as a whole is also significant. Because of that,
it is a different question whether the whole regression is significant
compared to whether each individual independent variable is signifi-
cant.

So, if we are interested in whether a single variable is significant or
not, this reverts back to checking whether the corresponding slope is
zero or not.
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H0 : β j = 0, H1 : β j 6= 0.

The test statistic is the same as for simple linear regression:

T0 =
β̂ j√

σ̂2 · Cjj

• where Cjj is the j-th 86 diagonal element of
(
XTX

)−1, 86 We assume here that the first row and
first column element is C00, i.e., we start
counting from zero.• and σ̂2 = MSE = SSE

n−k−1 .

Finally, reject if |T0| > tα/2,n−k−1. Note how the main difference from
the simple linear regression to the multiple linear regression comes in
the form of Cjj which replaces Sxx. 87 Let us put this to the test right 87 See Lecture 30-31 for details on Sxx .

away.

Multiple linear regression term single significance

Null hypothesis: Test statistic: Distribution:

H0 : β j = 0. T0 =
β̂ j√

MSE · Cjj

. T0 ∼ Tn−k−1.

H1 Rejection region CI region

β j 6= 0 |T0| > tα/2,n−k−1

[
β̂ j − tα/2,n−k−1

√
MSE · Cjj,

β̂ j + tα/2,n−k−1

√
MSE · Cjj

]
Testing significance one-by-one

Let us go back to the banking example from earlier. We al-
ready have that the regression line can be written as

ŷ = 1566.077 + 7.62 · #new loans + 8.58 · #loans outstanding.

• Is the number of new loans significant?

• Is the number of loans outstanding significant?

Use α = 0.05. Recall that we already know that the regression
is significant; again, though, this does not necessarily imply
that both of them are significant!
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Testing significance one-by-one

First of all, recall that:

• SSE =
16
∑

i=1
(yi − ŷi)

2 = 3479

• σ̂2 = MSE = SSE
13 = 267.62.

For β̂1 (number of new loans):

• We have
(
XTX

)−1
=

 14.176 −0.130 −0.223
−0.130 1.429 · 10−3 −4.764 · 10−5

−0.223 −4.764 · 10−5 2.222 · 10−2

.

• So..
C11 = 1.429 · 10−3.

Combining, we get

T0 =
7.62√

267.62 · 1.429 · 10−3
= 12.32.

Contrasting to t0.025,13 = 2.16, we reject. The number of new
loans is significant.

On the other hand, for β̂2 (number of loans outstanding):

• Again, looking at
(
XTX

)−1:

C22 = 2.222 · 10−2.

And we get that

T0 =
8.58√

267.62 · 2.222 · 10−2
= 3.52.

This leads to rejecting the null hypothesis and hence the num-
ber of loans outstanding is also significant. That said, there
is something to be said about which one of the two predictor
variables is more important to the regression, no?

We finish this lecture with one big, comprehensive example, solved
over the last few pages.
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One big comprehensive example

A real estate problem

Taken from realtor.com, here are 8 of the most recently sold
homes in Urbana:

Sq. ft. Year built Garages #bedrooms #bathrooms Price
1 1547 1950 1 3 3 158500

2 1834 1957 0 4 2 183000

3 2520 1980 3 5 2.5 233000

4 985 1911 1 2 1 69000

5 1275 1968 0 3 1.5 118000

6 2337 1977 2 5 2 249900

7 1880 1967 2 3 2 175000

8 1943 1965 1 4 2.5 169900

Which one of the five predictor variables (sq. ft., year built,
garages, #bedrooms, #bathrooms) is the least important for
predicting price? Use α = 0.05.

To solve this problem, we enumerate our steps in a way that makes
it easier to memorize, understand, and interpret. Here we go:

1. Build X =



1 1547 1950 1 3 3
1 1834 1957 0 4 2
1 2520 1980 3 5 2.5
1 985 1911 1 2 1
1 1275 1968 0 3 1.5
1 2337 1977 2 5 2
1 1880 1967 2 3 2
1 1943 1965 1 4 2.5


.

2. Calculate XTX =



8 14321 15675 10 29 16.5
14321 27474233 28123127 20469 55469 30798
15675 28123127 30716537 19654 56950 32377.5

10 20469 19654 20 40 22
29 55469 56950 40 113 62

16.5 30798 32377.5 22 62 36.75



3. Compute XTy =



1356300
2629528500
2664759800

1946200
5318600
2944550


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4. Compute
(
XTX

)−1
=



3654.00381 0.09848 −1.93379 −15.26988 −6.28608 0.35632
0.09848 0.00002 −0.00005 −0.00238 −0.00486 −0.00139
−1.93379 −0.00005 0.00102 0.00826 0.00341 −0.00038
−15.26988 −0.00238 0.00826 0.53030 0.63902 0.17674
−6.28608 −0.00486 0.00341 0.63902 1.85652 0.37698
0.35632 −0.00139 −0.00038 0.17674 0.37698 0.62852



5. Find β̂ =
(
XTX

)−1 XTy =



−322042.7
93.2
150.2
−4111.9
7242.7
4538.8


We finally get that the regression line is:

ŷ = −322042.7 + 93.2 · x1 + 150.2 · x2 − 4111.9 · x3 + 7242.7 · x4 + 4538.8 · x5

Let us get some of the estimator calculations out of the way now:

• SSE =
8
∑

i=1
(yi − ŷi)

2 = 1164261866.8.

• σ̂2 = MSE = SSE
8−6 = 582130933.4.

• SST = ∑ (yi − y)2 = 23582558750.

• Using ANOVA, SSR = SST − SSE = 23582558750− 1164261866.8 =

22418296883.2.

We now have everything we need to do five distinct hypothesis tests
for each of the five predictor variables. Specifically, we have:

1. For the square footage:

• H0 : β1 = 0, H1 : β1 6= 0.

• T0 =
β̂ j√

σ̂2·Cjj
= 93.2√

582130933.4·0.00002
= 0.964.

2. For the year built:

• H0 : β2 = 0, H1 : β2 6= 0.

• T0 = 150.2√
σ̂2·0.00102

= 0.195.

3. For the garage spots:

• H0 : β3 = 0, H1 : β3 6= 0.

• T0 = −4111.9√
σ̂2·0.5303

= −0.234.
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4. For the # bedrooms:

• H0 : β4 = 0, H1 : β4 6= 0.

• T0 = 7242.7√
σ̂2·1.85652

= 0.22.

5. For the # bathrooms:

• H0 : β5 = 0, H1 : β5 6= 0.

• T0 = 4538.8√
σ̂2·0.62852

= 0.237.

Hm... Apparently all factors are in the “fail to reject” region; in
essence, this means that all of them one-by-one can be viewed as
insignificant.. Some more (e.g., the year build with a T0 = 0.195)
than others (e.g., the square footage with a T0 = 0.964), but still all
of them can be declared insignificant when compared to tα/2,n−k−1 =

t0.025,2 = 4.303 as for all of them we have that |T0| < tα/2,n−k−1. So, is
the regression significant at all?

We can answer that through an F test:

F0 = MSR/MSE =
SSR

k
SSE

n−k−1

=
4483659376.64
582130933.4

= 7.7.

Checking the critical value we get that F0 ≤ fα,k,n−k−1 = f0.05,5,2 =

19.3, which means that we indeed do not have a good regression in
our hands.

Finally, we may calculate the R2 and adjusted R2 coefficients:

• R2 = 1− SSE/SST = 0.951.

• R2
adj = 1− SSE/(n−k−1)

SST/(n−1) = 0.827.

Note the difference between R2 and the adjusted R2
adj showcasing

that some insignificant predictor variables have been added.
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33. Regression extensions and
model building

Learning objectives

After lecture 33, we will be able to:

• Perform and interpret polynomial regression.

• Perform and interpret simple nonlinear regression.

• Build regression models with multiple predictors using:

– all subsets selection.

– backwards selection.

– forwards selection.

• Describe and implement an “80-20” validation strategy.

• Describe and implement a K-fold validation strategy.

Motivation: Higher degree terms

What if our relationships is not linear, but is instead a more general
polynomial? For example, what if I am sure that the yield of a crop
is related to the square of the temperature? How could we incorpo-
rate this information into our regression models?

Or, what if I plot my data in a scatter plot and get an image like
the one in Figure 86? How can I use regression to fit this data to a
line?

Figure 86: The scatter plot containing all of our data points.
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Motivation: Model building

Ok, so we have seen how to build models using 1 or k > 1 predictor
variables. But given many possible predictor variables, how can we
find the combination that works best?

Polynomial regression

Let’s start with a question. Which of the following regression models
do you believe best captures the data?

The first model (shown on the top left) is your typical simple lin-
ear regression. The other five models add some “curvature” by allow-
ing higher degrees in the regression. For example, the second model
is a quadratic term, whereas the last two are regressions that includes
terms at the power of 10 and 25!

So, assume you have tried simple linear regression and the re-
sults have been underwhelming. You would like, instead to try the
following line:

y = β0 + β1x + β11x2
1.

A couple of notes:

1. We only consider simple linear regression for simplicity: we could
very easily extend this to multiple linear regression.

2. There is one predictor variable: but it appears twice in our regres-
sion, one with degree 1 and one with degree 2. This is a quadratic
regression!

How can we deal with a regression like this? Well, we can follow the
next steps:

1. Create a “new” predictor variable (let us call it x2).
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2. Set x2 equal to x2
1: x2 = x2

1.

3. Set up a multiple linear regression using matrix X based on two
predictor variables: x1 and x2 = x2

1.

4. Find β̂ =

 β̂0

β̂1

β̂11

 =
(
XTX

)−1 XTy.

Let us put this to the test right away.

A small quadratic regression model

Consider the following data:

x y
7 310

3 59

5 153

5 162

4 91

6 212

7 297

5 151

9 823

We tried a linear regression and got the line y = 7.2404x −
2.2194.

0 2 4 6 8 10
0

200

400

600

800

Since it does not look great, we decide to try a second degree
regression polynomial of the form: y = β0 + β1x + β11x2.
What are β̂0, β̂1, ˆbeta11?
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A small quadratic regression model

1. Add a new column in your data that is equal to x2.

x x2 y
7 49 310

3 9 59

5 25 153

5 25 162

4 16 91

6 36 212

7 49 297

5 25 151

9 81 823

2. Construct X:

X =



1 7 49
1 3 9
1 5 25
1 5 25
1 4 16
1 6 36
1 7 49
1 5 25
1 9 81


3. Solve for β̂: β̂0

β̂1

β̂11

 =
(

XTX
)−1

XTy =

 437.74
−190.47

25.5


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Look at how much nicer this looks like!
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We can follow the same logic with other nonlinear functions!

Some nonlinear transformation examples

• y = β0 + β1x1 + β2x2 + β12x1x2

– Introduce new variable x12 = x1x2 and solve.

• y = β0 + β1x1 + β2x2 + β3x3 + β123x1x2x3

– Introduce new variable x123 = x1x2x3 and solve.

• We can even do that with other nonlinear functions: for
example y = β0 + β1x1 + β2cos(x1).

– Introduce new variable x2 = cos(x1) and solve.

• Or y = β0 + β1x1 + β2 log x1.

– Introduce new variable x2 = log x1 and solve.

Finally, what is the appropriate model? Now that we can go non-
linear, we could (if we wanted to) make almost all residuals equal to
zero! See for example the regression curve in Figure 87.

Figure 87: An example of overfitting. Here, we end up following the given data too
closely, not allowing for any randomness at all.

Of course, the opposite route is still very much possible. We may
decide that the simplest, linear regression may be the way to go. The
previous two cases are called overfitting and underfitting.

• Overfitting is an issue because we end up getting too caught up on
past information, and hence we lose our edge to predict the future
if it doesn’t look exactly like the past.
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Figure 88: An example of underfitting. Here, we end up with a simple linear regres-
sion that does not seem to follow the data as well.

• Underfitting, on the other hand, is an issue of oversimplification:
our model does not predict well because it is missing information.

We would like to do an appropriate model selection. How?

Figure 89: An appropriate model which balances past information and flexibility to
new data.
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Before we see the how, a couple of quotes that can help us drive
the point of model selection home:

1. Paul Valéry (philosopher, 1942)

“Ce qui est simple est toujours faux. Ce qui ne l’est pas est
inutilisable.” 88 88 “What is simple is always wrong.

What is not simple is impossible to
use.”2. George Box (statistician, 1978)

“All models are wrong, but some are useful.”

Model selection

In most problems, we have many potential variables to consider. To
make things worse, we can include different functions of the variables
themselves! Which ones should be included?

Which to include?

We want to build a regression model using any combination
of three factors x1, x2, x3. We can build any of the following
models:

1. x1 alone, or x2 alone, or x3 alone. 3 models.

2. x1 and x2 but not x3, or x1 and x3 but not x2, or x2 and x3

but not x2. 3 models.

3. x1, x2, and x3 toghether. 1 model.

4. None of them! 1 model.

The last case happens when all three factors are not significant
to the regression.

To make matters worse, assume if we could also add their
squares: x1, x2, x3, x2

1, x2
2, x2

3 for a total of 26 = 64 possible
models. Which one should we build?

Hopefully by now you are motivated and you see how this is
an important problem that needs to be addressed. Even more so
nowadays, with the advent of big data. It is imperative we find out
a way to trim the model so that only significant factors are included.
In the next few pages, we discuss three model building approaches,
called:

1. all subsets selection.

2. backwards selection.

3. forwards selection.
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All subsets selection

All subsets selection is a term to signal that we need to consider all
possible subsets we can create with our factors: these can be quite
many. They actually grow exponentially and with k predictor vari-
ables, we already have 2k possible subsets. 89 89 Why?

Among all 2k possible subsets, pick the subset of predictor vari-
ables/factors that leads to the largest R2

adj.

Back to the realtor.com example

Consider the realtor.com example from last time. We assumed
a house’s price depends on area (sq. ft.), the year built, the
garage spots, the number of bedrooms, and the number of
bathrooms. Which subset of variables gives us the best regres-
sion model?

We have 32 combinations to consider (including the empty
set, which implies that neither factor is significant). Some are
presented here:

• (x1, x2, x3, x4, x5): R2
adj = 0.827

• (x1, x2, x3, x4): R2
adj = 0.882

• (x2, x3, x4, x5): R2
adj = 0.831

• (x1, x3, x4, x5): R2
adj = 0.883

• . . .

• (x1, x2, x3): R2
adj = 0.910

• . . .

• (x1, x3, x4): R2
adj = 0.909

• (x1, x3, x5): R2
adj = 0.910

• . . .

• (x1, x2): R2
adj = 0.919

• (x1, x3): R2
adj = 0.926

• . . .

• (x1): R2
adj = 0.927

• ∅: R2
adj = 0.857

Among them, pick the one with the largest R2
adj. In our case,

that would be the model with only x1.

Backwards selection

We immediately see the issue with the previous case: too many com-
binations to consider, even for few predictor variables. To avoid enu-
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merating fully all subsets, we investigate two heuristic approaches.
With the term heuristic approach, we mean an approach that is not
guaranteed to give us the optimal subset; that said, we expect its
solution to be obtained faster. We proceed to describe the apporach.

1. First, start by including all predictor variables in your regression
model.

2. Do a hypothesis test for significance of each individual factor
among the predictor variables in your current regression.

3. Check if all P-values are above some threshold (say p > 0.10).

4. If not, find the one factor with the largest P-value.

• This is the “least significant” predictor.

5. Remove it from consideration and calculate the new R2
adj. If it is

lower than the previously obtained R2
adj, stop. Otherwise, iterate

(go back to step 1) after removing the factor.

If P-values are not readily available, we may compare each T-test
value |T0| to tα/2,n−k−1 and see if you’d accept/reject the hypothesis.
Then, pick the variable which is the farthest from the rejection area
and remove it from consideration instead.

Back to the realtor.com example

In the notes from Lecture 32, we did individual hypothesis
tests for each of the factors. We had gotten:

1. x1: T0 = 0.964 P-value = 0.437.

2. x2: T0 = 0.195 P-value = 0.864.

3. x3: T0 = −0.234 P-value = 0.837.

4. x4: T0 = 0.220 P-value = 0.846.

5. x5: T0 = 0.237 P-value = 0.835.

The R2
adj for the full model with all five variables is equal to

0.827. Use the backwards selection heuristic approach to find a
good regression model.
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Back to the realtor.com example

We remove the one with the largest P-value (the one with the
T0 test statistic value that is farthest from rejection): x2. We
then ran the new regression with the remaining four variables
to get that :

1. x1: T0 = 1.391 P-value = 0.258.

2. x3: T0 = −0.393 P-value = 0.720.

3. x4: T0 = 0.250 P-value = 0.819.

4. x5: T0 = 0.291 P-value = 0.790.

The new R2
adj is equal to 0.883: since it has improved, continue

with the next iteration. From the remaining factors, we now
remove x4 (the highest P-value). The new model (including
x1, x3, x5) leads to R2

adj = 0.910. This is an improvement, so we
continue. Again, the new model includes:

1. x1: T0 = 5.699 P-value = 0.005.

2. x3: T0 = −0.850 P-value = 0.443.

3. x5: T0 = 0.249 P-value = 0.816.

x5 is set to be removed, leaving us with a model including
only x1, x3. The new R2

adj is 0.926 – again improving the previ-
ous one. Hence, we get:

1. x1: T0 = 7.535 P-value = 0.0007.

2. x3: T0 = −0.993 P-value = 0.366.

Note how x3 has a P-value above 0.1: let’s try removing it and
keep a model with only x1. Its R2

adj is equal to 0.927 – another
improvement! Removing x1, though, we obtain the empty
model with R2

adj = 0.857. Since it worsens, we stick with the
model with x1 alone.

Forwards selection

Forwards selection is – you guessed it – the opposite idea!

1. First, start by including none of the predictor variables.

• That is, we have a line based only on the intercept β0.
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2. Then, run k separate regression models, one for each of the predic-
tor variables.

3. Check whether any of the P-values in each individual test is below
some threshold (say p < 0.10).

4. Pick the regression variable that leads to the smallest P-value.
Equivalently, you may check the variable whose addition increases
R2

adj the most.

• This is the “most significant” predictor.

5. Add it to the model and continue to run k− 1 separate regression
lines: each with the variable from the first part, and one of the
remaining variables.

6. Iterate and stop when no more variables have a P-value that is
lower than 0.10 (or when no addition leads to an increased R2

adj).

Back to the realtor.com example

Let us solve the same problem, but using forwards selection
now.

• First, perform five different regressions, one per variable.

1. x1: T0 = 9.492 P-value = 7.79 · 10−5.

2. x2: T0 = −3.354 P-value = 0.015.

3. x3: T0 = 4.396 P-value = 0.005.

4. x4: T0 = 6.343 P-value = 0.0007.

5. x5: T0 = 1.750 P-value = 0.131.

• We add the one with the smallest P-value (the one with
the T test statistic value that is the easiest to reject): x1. The
current model has R2

adj = 0.926.

• We then ran the new regression with the one variable from
earlier (x1) plus each of the remaining four:

1. (x1, x2): T0 = 0.632 P-value = 0.555.

2. (x1, x3): T0 = −0.993 P-value = 0.366.

3. (x1, x4): T0 = 0.741 P-value = 0.492.

4. (x1, x5): T0 = 0.386 P-value = 0.716.

All P-values are above 0.1, so we stop. The model obtained
from forwards selection is the one including x1 alone.



ie 300 351

Validation

We have build a regression model based on past data and we now
want to put it to the test. But before we do that, we want to check
how confident should we be in our model? How can we validate our
model selection?

Traditionally, the main idea has been to split our data (the data
that we would normally use to build our model!) in two parts: train-
ing data and testing data. The common split between these two is
80%-20% in favor of training. Now, we:

1. Use the training data to build the regression model.

2. Use the testing data to evaluate how well the regression is doing.

• We quantify the performance through the mean square error:

MSE =
1

n− 2 ∑
(
ytest

i − ŷtest
i
)2 .

Visually, this is the traditional 80-20 split:

TestingTraining

So, what is K-fold validation? K-fold validation involves splitting
the data into K parts, typically of equal size. K − 1 of them are used
as training data, with 1 part of them being used as testing data. Then,
we:

1. Use the training data to create K − 1 regression models, one for
each of the parts.

2. Use the testing data to test how well each of the regression models
are performing. Again, you may use the MSE as defined earlier.

3. Select and return the best model amongst them.

Or, visually:

Training 2 Training 3 Training 4 Training 5 TestingTraining 1

Training 2 Training 3 Training 4 Training 5 TestingTraining 1

Training 2 Training 3 Training 4 K− 1 TestingTraining 1

Training 2 Training 3 Training 4 Training 5 TestingTraining 1
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