Hypothesis testing for means and variances

Chrysafis Vogiatzis

Department of Industrial and Enterprise Systems Engineering
University of Illinois at Urbana-Champaign

Lecture 26-27

©Chrysafis Vogiatzis. Do not distribute without permission of the author
Overview

Hypothesis tests

On the mean
- Normal, known σ
 - Z statistic
- Normal, unknown σ
 - t statistic
- Non-normal, large sample
 - Z statistic

On the variance
- Normal distribution
 - χ^2 statistic

On the proportion
- Non-normal, large sample
 - Z statistic
Null hypothesis: $H_0 : p = p_0$.

Test statistic: $Z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$.

Distribution: $Z_0 \sim \mathcal{N}(0, 1)$.

<table>
<thead>
<tr>
<th>H_1</th>
<th>Rejection region</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \neq p_0$</td>
<td>$</td>
<td>Z_0</td>
</tr>
<tr>
<td>$p > p_0$</td>
<td>$Z_0 > z_\alpha$</td>
<td>$1 - \Phi(Z_0)$</td>
</tr>
<tr>
<td>$p < p_0$</td>
<td>$Z_0 < -z_\alpha$</td>
<td>$\Phi(Z_0)$</td>
</tr>
</tbody>
</table>

Reject if Z_0 or \hat{p} falls in the rejection region or if P-value $< \alpha$.
Hypothesis testing for means

Hypothesis tests

On the mean
- Normal, known σ
 - Z statistic
- Normal, unknown σ
 - t statistic
- Non-normal, large sample
 - Z statistic

On the variance
- Normal distribution
 - χ^2 statistic

On the proportion
- Non-normal, large sample
 - Z statistic
Null hypothesis: \(H_0 : \mu = \mu_0 \).

Test statistic: \(Z_0 = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \).

Distribution: \(Z_0 \sim N(0,1) \).

<table>
<thead>
<tr>
<th>(H_1)</th>
<th>Rejection region</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu \neq \mu_0)</td>
<td>(</td>
<td>Z_0</td>
</tr>
<tr>
<td>(\mu > \mu_0)</td>
<td>(Z_0 > z_{\alpha})</td>
<td>(1 - \Phi(Z_0))</td>
</tr>
<tr>
<td>(\mu < \mu_0)</td>
<td>(Z_0 < -z_{\alpha})</td>
<td>(\Phi(Z_0))</td>
</tr>
</tbody>
</table>

Reject if \(Z_0 \) or \(\bar{X} \) falls in the rejection region or if \(P \)-value < \(\alpha \).
Hypothesis testing for means of normally distributed populations with unknown variance

Null hypothesis: \(H_0 : \mu = \mu_0 \).

Test statistic: \(T_0 = \frac{\bar{X} - \mu_0}{s / \sqrt{n}} \).

Distribution: \(T_0 \sim T_{n-1} \).

Rejection region:

<table>
<thead>
<tr>
<th>(H_1)</th>
<th>Rejection region</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu \neq \mu_0)</td>
<td>(</td>
<td>T_0</td>
</tr>
<tr>
<td>(\mu > \mu_0)</td>
<td>(T_0 > t_{\alpha,n-1})</td>
<td>(1 - T_{n-1}(T_0))</td>
</tr>
<tr>
<td>(\mu < \mu_0)</td>
<td>(T_0 < -t_{\alpha,n-1})</td>
<td>(T_{n-1}(T_0))</td>
</tr>
</tbody>
</table>

Reject if \(T_0 \) or \(\bar{X} \) falls in the rejection region or if \(P \)-value < \(\alpha \).
Hypothesis testing for means of not normally distributed populations

Null hypothesis: \(H_0 : \mu = \mu_0 \).

Test statistic: \(Z_0 = \frac{\bar{X} - \mu_0}{s / \sqrt{n}} \).

Distribution: \(Z_0 \sim \mathcal{N}(0, 1) \).

Rejection region

<table>
<thead>
<tr>
<th>(H_1)</th>
<th>Rejection region</th>
<th>(P)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu \neq \mu_0)</td>
<td>(</td>
<td>Z_0</td>
</tr>
<tr>
<td>(\mu > \mu_0)</td>
<td>(Z_0 > z_{\alpha})</td>
<td>(1 - \Phi(Z_0))</td>
</tr>
<tr>
<td>(\mu < \mu_0)</td>
<td>(Z_0 < -z_{\alpha})</td>
<td>(\Phi(Z_0))</td>
</tr>
</tbody>
</table>

Reject if \(Z_0 \) or \(\bar{X} \) falls in the rejection region or if \(P \)-value < \(\alpha \).
Hypothesis testing for variances

- On the mean
 - Normal, known σ
 - Z statistic
 - Normal, unknown σ
 - t statistic
 - Non-normal, large sample
 - Z statistic

- On the variance
 - Normal distribution
 - χ^2 statistic

- On the proportion
 - Non-normal, large sample
 - Z statistic
Hypothesis testing for variances of normally distributed populations

Null hypothesis: \(H_0 : \sigma^2 = \sigma_0^2. \)

Test statistic: \(\chi_0^2 = \frac{(n-1) s^2}{\sigma_0^2}. \)

Distribution: \(\chi_0^2 \sim \chi^2_{n-1}. \)

Rejection region:
- \(\sigma^2 \neq \sigma_0 \):
 - \(\chi_0^2 > \chi^2_{\alpha/2,n-1} \)
 - \(\chi_0^2 < \chi^2_{1-\alpha/2,n-1} \)

CI region:
- \(\sigma^2 > \sigma_0 \):
 - \(\left[\frac{(n-1)\sigma^2_0}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)\sigma^2_0}{\chi^2_{1-\alpha/2,n-1}} \right] \)
- \(\sigma^2 < \sigma_0 \):
 - \(\left(-\infty, \frac{(n-1)\sigma^2_0}{\chi^2_{1-\alpha,n-1}} \right] \)

Reject if \(\chi_0^2 \) or \(\sigma^2_0 \) falls in the rejection region.
Example

A call center is concerned that call durations for a customer service representative are too erratic: high variations in call durations can lead to customer dissatisfaction who have to wait longer for a resolution. The company has collected data from \(n = 24 \) randomly selected phone calls from that specific customer representative and calculated that \(s = 5 \) minutes.

1. **Is there enough evidence to suggest that \(\sigma = 4 \) minutes? Use \(\alpha = 0.05 \).**

2. **Assume that we do not care about the standard deviation being lower than 4 minutes; instead, we are only interested if the standard deviation is higher than that. Is there enough evidence to suggest that \(\sigma = 4 \) minutes or is it higher than that? Again, you may use that \(\alpha = 0.05 \).**
Solution to the example

First, set up your hypothesis:

\[H_0 : \sigma^2 = 16 \]
\[H_1 : \sigma^2 \neq 16. \]

- Calculate \(\chi^2_0 = \frac{(n-1)s^2}{\sigma^0} = \frac{23 \cdot 5^2}{16} = 35.94. \)
- Find the critical values for \(\chi^2_{0.025,23} \) and \(\chi^2_{0.975,23} \) as 38.076 and 11.689, respectively.
- **Fail to reject** as \(\chi^2_{0.975,23} \leq \chi^2_0 \leq \chi^2_{0.025,23}. \)

For the second part, set up the hypothesis as:

\[H_0 : \sigma^2 = 16 \]
\[H_1 : \sigma^2 > 16. \]

- The test statistic is still \(\chi^2_0 = 35.94. \)
- However now we are only looking for \(\chi^2_{\alpha,n-1} = \chi^2_{0.05,23} = 35.172. \)
- **Reject** then as \(\chi^2_0 > \chi^2_{0.05,23}. \)
Solution to the example

First, set up your hypothesis:

\[H_0 : \sigma^2 = 16 \]
\[H_1 : \sigma^2 \neq 16. \]

- Calculate \(\chi^2_0 = \frac{(n-1)s^2}{\sigma^2_0} = \frac{23.5^2}{16} = 35.94. \)

- Find the critical values for \(\chi^2_{0.025,23} \) and \(\chi^2_{0.975,23} \) as 38.076 and 11.689, respectively.

- **Fail to reject** as \(\chi^2_{0.975,23} \leq \chi^2_0 \leq \chi^2_{0.025,23}. \)

For the second part, set up the hypothesis as:

\[H_0 : \sigma^2 = 16 \]
\[H_1 : \sigma^2 > 16. \]

- The test statistic is still \(\chi^2_0 = 35.94. \)

- However now we are only looking for \(\chi^2_{\alpha,n-1} = \chi^2_{0.05,23} = 35.172. \)

- **Reject** then as \(\chi^2_0 > \chi^2_{0.05,23}. \)
Solution to the example

First, set up your hypothesis:

\[H_0 : \sigma^2 = 16 \]
\[H_1 : \sigma^2 \neq 16. \]

- Calculate \(\chi^2_0 = \frac{(n-1)s^2}{\sigma^2_0} = \frac{23.5^2}{16} = 35.94. \)

- Find the critical values for \(\chi^2_{0.025,23} \) and \(\chi^2_{0.975,23} \) as 38.076 and 11.689, respectively.

- **Fail to reject** as \(\chi^2_{0.975,23} \leq \chi^2_0 \leq \chi^2_{0.025,23}. \)

For the second part, set up the hypothesis as:

\[H_0 : \sigma^2 = 16 \]
\[H_1 : \sigma^2 > 16. \]

- The test statistic is still \(\chi^2_0 = 35.94. \)

- However now we are only looking for \(\chi^2_{\alpha,n-1} = \chi^2_{0.05,23} = 35.172. \)

- **Reject** then as \(\chi^2_0 > \chi^2_{0.05,23}. \)
Solution to the example

First, set up your hypothesis:

\[H_0 : \sigma^2 = 16 \]
\[H_1 : \sigma^2 \neq 16. \]

- Calculate \(\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{23.5^2}{16} = 35.94. \)
- Find the critical values for \(\chi_{0.025,23}^2 \) and \(\chi_{0.975,23}^2 \) as 38.076 and 11.689, respectively.
- **Fail to reject** as \(\chi_{0.975,23}^2 \leq \chi_0^2 \leq \chi_{0.025,23}^2. \)

For the second part, set up the hypothesis as:

\[H_0 : \sigma^2 = 16 \]
\[H_1 : \sigma^2 > 16. \]

- The test statistic is still \(\chi_0^2 = 35.94. \)
- However now we are only looking for \(\chi_{\alpha,n-1}^2 = \chi_{0.05,23}^2 = 35.172. \)
- **Reject** then as \(\chi_0^2 > \chi_{0.05,23}^2. \)
Solution to the example

First, set up your hypothesis:

\[H_0 : \sigma^2 = 16 \]
\[H_1 : \sigma^2 \neq 16. \]

- Calculate \(\chi^2_0 = \frac{(n-1)s^2}{\sigma^2_0} = \frac{23.5^2}{16} = 35.94. \)
- Find the critical values for \(\chi^2_{0.025,23} \) and \(\chi^2_{0.975,23} \) as 38.076 and 11.689, respectively.
- **Fail to reject** as \(\chi^2_{0.975,23} \leq \chi^2_0 \leq \chi^2_{0.025,23}. \)

For the second part, set up the hypothesis as:

\[H_0 : \sigma^2 = 16 \]
\[H_1 : \sigma^2 > 16. \]

- The test statistic is still \(\chi^2_0 = 35.94. \)
- However now we are only looking for \(\chi^2_{\alpha,n-1} = \chi^2_{0.05,23} = 35.172. \)

Reject then as \(\chi^2_0 > \chi^2_{0.05,23}. \)
Solution to the example

First, set up your hypothesis:

\[H_0 : \sigma^2 = 16 \]
\[H_1 : \sigma^2 \neq 16. \]

- Calculate \(\chi^2_0 = \frac{(n-1)s^2}{\sigma^2_0} = \frac{23.5^2}{16} = 35.94. \)
- Find the critical values for \(\chi^2_{0.025,23} \) and \(\chi^2_{0.975,23} \) as 38.076 and 11.689, respectively.
- **Fail to reject** as \(\chi^2_{0.975,23} \leq \chi^2_0 \leq \chi^2_{0.025,23}. \)

For the second part, set up the hypothesis as:

\[H_0 : \sigma^2 = 16 \]
\[H_1 : \sigma^2 > 16. \]

- The test statistic is still \(\chi^2_0 = 35.94. \)
- However now we are only looking for \(\chi^2_{\alpha,n-1} = \chi^2_{0.05,23} = 35.172. \)
- **Reject** then as \(\chi^2_0 > \chi^2_{0.05,23}. \)